Abstract

The combined entry problem for the simultaneous development of heat and momentum transfer in a circular tube has been resolved over an extended range of inverse Graetz number ZH106 and for a wide range of Prandtl numbers 0.1Pr500. For the historical range of ZH5×104 and 0.7Pr50, earlier studies are within 5% of the current benchmark calculations, but for the new extended range of conditions, the best authoritative sources were in error by as much as 33%. Four new correlations are proposed for the local and average Nusselt numbers, and for the constant temperature and constant heat flux wall condition, which are accurate to 2.2% for all values of inverse Graetz number and Pr0.5. In contrast, legacy correlations typically had a 10–20% error range when compared to the results of this work, with many exhibiting larger errors and only few achieving errors as low as 5–10%.

References

References
1.
Jensen
,
M. K.
,
1989
, “
Simultaneously Developing Laminar Flow in an Isothermal Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
16
(
6
), pp.
811
820
.10.1016/0735-1933(89)90007-9
2.
Bennett
,
T. D.
,
2019
, “
Correlations for Convection in Hydrodynamically Developing Laminar Duct Flow
,”
ASME J. Heat Transfer
,
141
(
11
), p.
111701
.10.1115/1.4044390
3.
Giudice
,
S. D.
,
Strada
,
M.
, and
Comini
,
G.
,
1979
, “
Laminar Heat Transfer in the Entrance Region of Ducts
,”
Numer. Heat Transfer
,
2
(
4
), pp.
487
496
.10.1080/10407787908913428
4.
Shome
,
B.
, and
Jensen
,
M. K.
,
1993
, “
Correlations for Simultaneously Developing Laminar Flow and Heat Transfer in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2710
2713
.10.1016/S0017-9310(05)80209-1
5.
Nguyen
,
T. V.
,
1993
, “
Incremental Heat Transfer Number in the Entry Region of Circular Tubes
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3659
3662
.10.1016/0017-9310(93)90182-6
6.
Paz
,
S. P. A.
,
Macedo
,
E. N.
,
Quaresma
,
J. N.
, and
Cotta
,
R. M.
,
2007
, “
Eigenfunction Expansion Solution for Boundary-Layer Equations in Cylindrical Coordinates: Simultaneously Developing Flow in Circular Tubes
,”
Numer. Heat Transfer, Part A: Appl.
,
52
(
12
), pp.
1123
1149
.10.1080/10407780701364445
7.
Hornbeck
,
R. W.
,
1965
, “
An All-Numerical Method for Heat Transfer in the Inlet of a Tube
,”
ASME Paper No. 65-WA/RT-36
.10.1115/65-WA/RT-36
8.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
9.
Al
, ‐
Ali
,
H. H.
, and
Selim
,
M. S.
,
1992
, “
Analysis of Laminar Flow Forced Convection Heat Transfer With Uniform Heating in the Entrance Region of a Circular Tube
,”
Can. J. Chem. Eng.
,
70
(
6
), pp.
1101
1107
.10.1002/cjce.5450700610
10.
Bennett
,
T. D.
,
2012
,
Transport by Advection and Diffusion
,
Wiley
,
New York
.
11.
Bennett
,
T. D.
,
2019
, “
A Historical Misperception on Calculating the Average Convection Coefficient in Tubes With Constant Wall Heat Flux
,”
ASME J. Heat Transfer
,
141
(
6
), p.
061702
.10.1115/1.4043303
12.
Crank
,
J.
, and
Nicolson
,
P.
,
1947
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Math. Proc. Cambridge Philos. Soc.
,
43
(
1
), pp.
50
67
.10.1017/S0305004100023197
13.
Bennett
,
T. D.
,
2020
, “
Refinement of the Generalized Graetz Problem Correlation With New Benchmark Calculations
,”
ASME J. Heat Transfer
,
142
(
5
), p.
051802
.10.1115/1.4046346
14.
Bennett
,
T. D.
,
2019
, “
Correlations for the Graetz Problem in Convection—Part 2: For Ducts of Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1327
1334
.10.1016/j.ijheatmasstransfer.2019.02.052
15.
Bennett
,
T. D.
,
2020
, “
Generalized Lévêque Solution for Ducts of Arbitrary Cross-Section
,” Submitted for Publication.
16.
Stephan
,
K.
,
1959
, “
Wärmeübergang Und Druckabfall Bei Nicht Ausgebildeter Laminarströmung in Rohren Und in Ebenen Spalten
,”
Chem. Ing. Tech.
,
31
(
12
), pp.
773
778
.10.1002/cite.330311204
17.
Nellis
,
G.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
University Press
,
Cambridge, UK
.
18.
Jacimovic
,
B.
,
Genic
,
S.
, and
Lelea
,
D.
,
2018
, “
Calculation of Heat Transfer Coefficient for Laminar Flow in Pipes in Practical Engineering Applications
,”
Heat Transfer Eng.
,
39
(
20
), pp.
1790
1796
.10.1080/01457632.2017.1388949
19.
Giudice
,
S. D.
,
Savino
,
S.
, and
Nonino
,
C.
,
2017
, “
Entrance and Temperature-Dependent Property Effects on Laminar Duct Flows of Liquids
,”
ASME J. Heat Transfer
,
139
(
3
), p.
034504
.10.1115/1.4035016
20.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Folly Developed Flow in a Tube
,”
ASME J. Heat Transfer
,
95
(
1
), pp.
78
84
.10.1115/1.3450009
21.
Gnielinski
,
V.
,
1993
, “
Heat Transfer in Pipe Flow
,”
VDI-Heat Atlas
,
Springer
,
Berlin
, pp.
693
699
.
22.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
23.
Stephan
,
K.
,
1994
, “
Thermodynamics
,”
Dubbel, Handbook of Mechanical Engineering
, 1st ed., Vol.
1
,
W. B. a. K.
Kuttner
, ed.,
Springer-Verlag
,
Berlin
, pp.
C1
C54
.
24.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Iso- Thermal Tube
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
You do not currently have access to this content.