Abstract

A novel finite volume method about the boundary layer flow and heat transfer of fractional viscoelastic fluid over a moving plate with convective boundary condition is developed. The fractional Maxwell model and fractional Fourier's law are employed in the constitutive relations. Numerical solutions are obtained and validated by exact solutions of special case with source terms. The effects of fractional parameters on the flow and heat transfer characteristics are analyzed. Results show that the viscoelastic fluid performs shear-thickening property with the increase of fractional parameter. Moreover, the variations of the average Nusselt number demonstrate that the viscoelastic fluid characterized by fractional Fourier's law has short memory in heat conduction process.

References

References
1.
Bejan
,
A.
,
2004
,
Convective Heat Transfer
,
Wiley
,
New York
.
2.
Aziz
,
A.
,
2009
, “
A Similarity Solution for Laminar Thermal Boundary Layer Over a Flat Plate With a Convective Surface Boundary Condition
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
14
(
4
), pp.
1064
1068
.10.1016/j.cnsns.2008.05.003
3.
Subhashini
,
S. V.
,
Samuel
,
N.
, and
Pop
,
I.
,
2011
, “
Double-Diffusive Convection From a Permeable Vertical Surface Under Convective Boundary Condition
,”
Int. Commun. Heat Mass
,
38
(
9
), pp.
1183
1188
.10.1016/j.icheatmasstransfer.2011.06.006
4.
Rahman
,
M. M.
, and
Eltayeb
,
I. A.
,
2013
, “
Radiative Heat Transfer in a Hydromagnetic Nanofluid Past a Non-Linear Stretching Surface With Convective Boundary Condition
,”
Meccanica
,
48
(
3
), pp.
601
615
.10.1007/s11012-012-9618-2
5.
Ramzan
,
M.
,
Bilal
,
M.
, and
Chung
,
J. D.
,
2017
, “
Influence of Homogeneous-Heterogeneous Reactions on MHD 3D Maxwell Fluid Flow With Cattaneo-Christov Heat Flux and Convective Boundary Condition
,”
J Mol. Liq.
,
230
, pp.
415
422
.10.1016/j.molliq.2017.01.061
6.
Hayat
,
T.
,
Aslam
,
N.
,
Ijaz Khan
,
M.
,
Imran Khan
,
M.
, and
Alsaedi
,
A.
,
2019
, “
MHD Peristaltic Motion of Johnson–Segalman Fluid in an Inclined Channel Subject to Radiative Flux and Convective Boundary Conditions
,”
Comput. Methods Prog. Biol.
,
180
, p.
104999
.10.1016/j.cmpb.2019.104999
7.
Kumari
,
S.
, and
Murthy
,
P.
,
2019
, “
Stability of the Horizontal Throughflow of a Power-Law Fluid in a Double-Diffusive Porous Layer Under Convective Boundary Conditions
,”
Int. J Therm. Sci.
,
146
, p.
106098
.10.1016/j.ijthermalsci.2019.106098
8.
Mittal
,
A. S.
,
Patel
,
H. R.
, and
Darji
,
R. R.
,
2019
, “
Mixed Convection Micropolar Ferrofluid Flow With Viscous Dissipation, Joule Heating and Convective Boundary Conditions
,”
Int. Commun. Heat Mass
,
108
, p.
104320
.10.1016/j.icheatmasstransfer.2019.104320
9.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
10.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.10.1122/1.549887
11.
Friedrich
,
C.
,
1991
, “
Relaxation and Retardation Functions of the Maxwell Model With Fractional Derivatives
,”
Rheol. Acta
,
30
(
2
), pp.
151
158
.10.1007/BF01134604
12.
Song
,
D.
, and
Jiang
,
T.
,
1998
, “
Study on the Constitutive Equation With Fractional Derivative for the Viscoelastic fluids-Modified Jeffreys Model and Its Application
,”
Rheol. Acta
,
37
(
5
), pp.
512
517
.10.1007/s003970050138
13.
Song
,
D.
,
Song
,
X.
,
Jiang
,
T.
,
Lu
,
Y.
, and
Jiang
,
D.
,
2000
, “
Study of Rheological Characterization of Fenugreek Gum With Modified  Maxwell Model
,”
Chin. J Chem. Eng.
,
8
(
1
), pp.
85
88
. http://www.cjche.com.cn/EN/volumn/volumn_1200.shtml
14.
Xu
,
Z.
, and
Chen
,
W.
,
2013
, “
A Fractional-Order Model on New Experiments of Linear Viscoelastic Creep of Hami Melon
,”
Comput. Math. Appl.
,
66
(
5
), pp.
677
681
.10.1016/j.camwa.2013.01.033
15.
Xu
,
H.
, and
Jiang
,
X.
,
2017
, “
Creep Constitutive Models for Viscoelastic Materials Based on Fractional Derivatives
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1377
1384
.10.1016/j.camwa.2016.05.002
16.
Jiang
,
Y.
,
Qi
,
H.
,
Xu
,
H.
, and
Jiang
,
X.
,
2017
, “
Transient Electroosmotic Slip Flow of Fractional Oldroyd-B Fluids
,”
Microfluid. Nanofluid.
,
21
(
1
), p.
7
.10.1007/s10404-016-1843-x
17.
Liu
,
L.
, and
Liu
,
F.
,
2018
, “
Boundary Layer Flow of Fractional Maxwell Fluid Over a Stretching Sheet With Variable Thickness
,”
Appl. Math. Lett.
,
79
, pp.
92
99
.10.1016/j.aml.2017.10.008
18.
Ferrás
,
L. L.
,
Ford
,
N. J.
,
Morgado
,
M. L.
,
Rebelo
,
M.
,
McKinley
,
G. H.
, and
Nóbrega
,
J. M.
,
2018
, “
Theoretical and Numerical Analysis of Unsteady Fractional Viscoelastic Flows in Simple Geometries
,”
Comput. Fluids
,
174
, pp.
14
33
.10.1016/j.compfluid.2018.07.004
19.
Rasheed
,
A.
, and
Anwar
,
M. S.
,
2018
, “
Simulations of Variable Concentration Aspects in a Fractional Nonlinear Viscoelastic Fluid Flow
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
65
, pp.
216
230
.10.1016/j.cnsns.2018.05.012
20.
Chen
,
X.
,
Yang
,
W.
,
Zhang
,
X.
, and
Liu
,
F.
,
2019
, “
Unsteady Boundary Layer Flow of Viscoelastic MHD Fluid With a Double Fractional Maxwell Model
,”
Appl. Math. Lett.
,
95
, pp.
143
149
.10.1016/j.aml.2019.03.036
21.
Bai
,
Y.
,
Huo
,
L.
,
Zhang
,
Y.
, and
Jiang
,
Y.
,
2019
, “
Flow, Heat and Mass Transfer of Three-Dimensional Fractional Maxwell Fluid Over a Bidirectional Stretching Plate With Fractional Fourier's Law and Fractional Fick's Law
,”
Comput. Math. Appl.
,
78
(
8
), pp.
2831
2846
.10.1016/j.camwa.2019.04.027
22.
Javadi
,
M.
,
Noorian
,
M. A.
, and
Irani
,
S.
,
2019
, “
Stability Analysis of Pipes Conveying Fluid With Fractional Viscoelastic Model
,”
Meccanica
,
54
(
3
), pp.
399
410
.10.1007/s11012-019-00950-3
23.
Javadi
,
M.
,
Noorian
,
M. A.
, and
Irani
,
S.
,
2019
, “
Primary and Secondary Resonances in Pipes Conveying Fluid With the Fractional Viscoelastic Model
,”
Meccanica
,
54
(
14
), pp.
2081
2098
.10.1007/s11012-019-01068-2
24.
Zhang
,
J.
,
Liu
,
F.
,
Lin
,
Z.
, and
Anh
,
V.
,
2019
, “
Analytical and Numerical Solutions of a Multi-Term Time-Fractional Burgers' Fluid Model
,”
Appl. Math. Comput.
,
356
, pp.
1
12
.10.1016/j.amc.2019.02.079
25.
Zhao
,
J.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Liu
,
F.
,
2016
, “
Unsteady Natural Convection Boundary Layer Heat Transfer of Fractional Maxwell Viscoelastic Fluid Over a Vertical Plate
,”
Int. J Heat Mass Transfer
,
97
, pp.
760
766
.10.1016/j.ijheatmasstransfer.2016.02.059
26.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
27.
Versteeg
,
H.
, and
Malalasekra
,
W.
,
1996
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp.
12
20
.10.1016/j.amc.2006.08.162
29.
Ganesan
,
P.
, and
Palani
,
G.
,
2004
, “
Finite Difference Analysis of Unsteady Natural Convection MHD Flow Past an Inclined Plate With Variable Surface Heat and Mass Flux
,”
Int. J Heat Mass Transfer
,
47
(
19–20
), pp.
4449
4457
.10.1016/j.ijheatmasstransfer.2004.04.034
30.
Liu
,
L.
,
Zheng
,
L.
,
Chen
,
Y.
, and
Liu
,
F.
,
2018
, “
Fractional Boundary Layer Flow and Heat Transfer Over a Stretching Sheet With Variable Thickness
,”
ASME J Heat Transfer
,
140
(
9
), p.
091701
.10.1115/1.4039765
31.
Ezzat
,
M. A.
,
Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2016
, “
Electro-Thermoelasticity Theory With Memory-Dependent Derivative Heat Transfer
,”
Int. J Eng. Sci.
,
99
, pp.
22
38
.10.1016/j.ijengsci.2015.10.011
32.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2010
, “
MHD Mixed Convection From a Vertical Plate Embedded in a Porous Medium With a Convective Boundary Condition
,”
Int. J Therm. Sci.
,
49
(
9
), pp.
1813
1820
.10.1016/j.ijthermalsci.2010.05.015
You do not currently have access to this content.