Abstract

In some northern regions, power transmission lines are built with metal tower footings buried in the permafrost. With a high thermal conductivity, the tower footing has a significant thermal effect on the foundation and the nearby permafrost. Heat transfer models were previously developed to predict the thermal effect with line heat source assumptions, without knowing the exact spatial distribution and temporal variation of the heat source strength. This limited the accuracy of these heat transfer models. In this work, an inverse heat transfer method (IHTM) based on dynamic matrix control (DMC) theory is developed to better estimate the heat source strength representing the tower footing. The methodology is validated with numerical simulations and experimental data. It is found that the distribution of heat source varies spatially and temporally in a more complicated way than what was assumed in previous studies. The inversed heat source is then used to reconstruct the temperature fields in a tower foundation, which provides more accurate heat transfer analysis for design and maintenance of the foundation.

References

References
1.
Lunardini
,
V. J.
,
1981
,
Heat Transfer in Cold Climates
,
Van Nostrand Reinhold Company
,
New York
.
2.
Andersland
,
O. B.
, and
Ladanyi
,
B.
,
1994
,
An Introduction to Frozen Ground Engineering
,
Chapman and Hall
,
New York
.
3.
Streletskiy
,
D. A.
,
Shiklomanov
,
N. I.
, and
Nelson
,
F. E.
,
2012
, “
Permafrost, Infrastructure, and Climate Change: A GIS-Based Landscape Approach to Geotechnical Modeling
,”
Arct. Antarct. Alp. Res
,
44
(
3
), pp.
368
380
.10.1657/1938-4246-44.3.368
4.
Hinkel
,
K. M.
,
Paetzold
,
F.
,
Nelson
,
F. E.
, and
Bockheim
,
J. G.
,
2001
, “
Patterns of Soil Temperature and Moisture in the Active Layer and Upper Permafrost at Barrow, Alaska: 1993–1999
,”
Global Planet. Change
,
29
(
3–4
), pp.
293
309
.10.1016/S0921-8181(01)00096-0
5.
Duan
,
X.
, and
Naterer
,
G. F.
,
2008
, “
Ground Thermal Response to Heat Conduction in a Power Transmission Tower Foundation
,”
Heat Mass Transfer
,
44
(
5
), pp.
547
558
.10.1007/s00231-007-0282-3
6.
United States Arctic Research Commission
,
2003
, “
Climate Change, Permafrost, and Impacts on Civil Infrastructure
,” Permafrost Task Force Report,
U. S. Arctic Research Commission
,
Arlington, VA
, Report No. 01–03.
7.
Duan
,
X.
,
and
Naterer
,
G. F.
,
2008
, “
Seasonal Heat Transfer and Ground Thermal Response in a Power Transmission Tower Foundation
,”
I. J. Trans. Phenomena
,
10
(
4
), pp.
307
322
.
8.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, Jr.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
9.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
10.
Sivanbaev
,
A. V.
,
1971
, “
Thawing of Permafrost Under a High-Temperature Heat Source
,”
Soil. Mech. Found. Eng.
,
8
(
1
), pp.
50
53
.10.1007/BF01708782
11.
Sodha
,
M. S.
,
Sawhney
,
R. L.
, and
Sengupta
,
A.
,
1994
, “
Shape Factor for an Underground Vertical Infinite Cylindrical Structure
,”
Int. J. Energy Res.
,
18
(
4
), pp.
431
436
.10.1002/er.4440180403
12.
Zeng
,
H. Y.
,
Diao
,
N. R.
, and
Fang
,
Z. H.
,
2002
, “
A Finite Line‐Source Model for Boreholes in Geothermal Heat Exchangers
,”
Heat Transfer—Asian Res.
,
31
(
7
), pp.
558
567
.10.1002/htj.10057
13.
Bandos
,
T. V.
,
Montero
,
A.
,
Fernández
,
E.
,
Santander
,
J. L. G.
,
Isidro
,
J. M.
,
Pérez
,
J.
,
de Córdoba
,
P. J. F.
, and
Urchueguía
,
J. F.
,
2009
, “
Finite Line-Source Model for Borehole Heat Exchangers: Effect of Vertical Temperature Variations
,”
Geothermics
,
38
(
2
), pp.
263
270
.10.1016/j.geothermics.2009.01.003
14.
Yang
,
H.
,
Cui
,
P.
, and
Fang
,
Z.
,
2010
, “
Vertical-Borehole Ground-Coupled Heat Pumps: A Review of Models and Systems
,”
Appl. Energy
,
87
(
1
), pp.
16
27
.10.1016/j.apenergy.2009.04.038
15.
Duan
,
X.
, and
Naterer
,
G. F.
,
2008
, “
Ground Heat Transfer From a Varying Line Source With Seasonal Temperature Fluctuations
,”
ASME J. Heat Transfer
,
130
(
11
), pp.
1349
1357
.10.1115/1.2955467
16.
Duan
,
X.
, and
Naterer
,
G. F.
,
2009
, “
Heat Conduction With Seasonal Freezing and Thawing in an Active Layer Near a Tower Foundation
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2068
2078
.10.1016/j.ijheatmasstransfer.2008.11.004
17.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R. S.
, Jr.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
18.
Huang
,
C. H.
, and
Ozisik
,
M. N.
,
1991
, “
Optimal Regularization Method to Determine the Strength of a Plane Surface Heat Source
,”
Int. J. Heat Fluid Flow
,
12
(
2
), pp.
173
178
.10.1016/0142-727X(91)90045-W
19.
Huang
,
C. H.
, and
Lee
,
C. T.
,
2015
, “
An Inverse Problem to Estimate Simultaneously Six Internal Heat Fluxes for a Square Combustion Chamber
,”
Int. J. Therm. Sci.
,
88
, pp.
59
76
.10.1016/j.ijthermalsci.2014.08.021
20.
Wang
,
G.
,
Luo
,
Z.
,
Zhu
,
L.
,
Chen
,
H.
, and
Zhang
,
L.
,
2012
, “
Fuzzy Estimation for Temperature Distribution of Furnace Inner Surface
,”
Int. J. Heat Mass Transfer
,
51
, pp.
84
90
.10.1016/j.ijthermalsci.2011.07.015
21.
Alifanov
,
O. M.
,
Budnik
,
S. A.
,
Mikhaylov
,
V. V.
,
Nenarokomov
,
A. V.
,
Titov
,
D. M.
, and
Yudin
,
V. M.
,
2007
, “
An Experimental–Computational System for Materials Thermal Properties Determination and Its Application for Spacecraft Structures Testing
,”
Acta Astronaut.
,
61
(
1–6
), pp.
341
351
.10.1016/j.actaastro.2007.01.035
22.
Samadi
,
F.
,
Kowsary
,
F.
, and
Sarchami
,
A.
,
2012
, “
Estimation of Heat Flux Imposed on the Rake Face of a Cutting Tool: A Nonlinear, Complex Geometry Inverse Heat Conduction Case Study
,”
Int. Commun. Heat Mass
,
39
(
2
), pp.
298
303
.10.1016/j.icheatmasstransfer.2011.10.007
23.
Wang
,
G.
,
Wan
,
S.
,
Chen
,
H.
,
Lv
,
C.
, and
Zhang
,
D.
,
2017
, “
A Double Decentralized Fuzzy Inference Method for Estimating the Time and Space-Dependent Thermal Boundary Condition
,”
Int. J. Heat Mass Transfer
,
109
, pp.
302
311
.10.1016/j.ijheatmasstransfer.2017.02.001
24.
Yang
,
Y. C.
,
Chen
,
W. L.
, and
Lee
,
H. L.
,
2011
, “
A Nonlinear Inverse Problem in Estimating the Heat Generation in Rotary Friction Welding
,”
Numer. Heat Transfer, Part A
,
59
(
2
), pp.
130
149
.10.1080/10407782.2011.540965
25.
Liu
,
F. B.
,
2008
, “
A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3745
3752
.10.1016/j.ijheatmasstransfer.2008.01.002
26.
Tao
,
W.
,
2001
,
Numerical Heat Transfer
,
Xi'an Jiaotong University
,
Xi'an, China
(in Chinese).
27.
Duan
,
X.
, and
Naterer
,
G. F.
,
2010
, “
Heat Transfer in a Tower Foundation With Ground Surface Insulation and Periodic Freezing and Thawing
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2369
2376
.10.1016/j.ijheatmasstransfer.2010.02.003
28.
Wang
,
G.
,
Li
,
Y.
,
Chen
,
H.
,
Wan
,
S.
, and
Lv
,
C.
,
2017
, “
Fuzzy Adaptive Predictive Inverse for Nonlinear Transient Heat Transfer Process
,”
ASME J. Heat Transfer
,
139
(
10
), p.
102002
.10.1115/1.4036573
29.
Li
,
Y.
,
Wang
,
G.
, and
Chen
,
H.
,
2015
, “
Simultaneously Estimation for Surface Heat Fluxes of Steel Slab in a Reheating Furnace Based on DMC Predictive Control
,”
Appl. Therm. Eng.
,
80
, pp.
396
403
.10.1016/j.applthermaleng.2015.01.069
You do not currently have access to this content.