Abstract

The simultaneous effect of a time-dependent velocity term in the momentum equation and a maximum density property on the stability of natural convection in a vertical layer of Darcy porous medium is investigated. The density is assumed to vary quadratically with temperature and as a result, the basic velocity distribution becomes asymmetric. The problem has been analyzed separately with (case 1) and without (case 2) time-dependent velocity term. It is established that Gill's proof of linear stability effective for case 2 but found to be ineffective for case 1. Due to the lack of Gill's proof for case1, the stability eigenvalue problem is solved numerically and observed that the instability sets in always via traveling-wave mode when the Darcy–Prandtl number is not larger than 7.08. The neutral stability curves and isolines are presented for different governing parameters. The critical values of Darcy–Rayleigh number corresponding to quadratic density variation with respect to temperature, critical wave number, and the critical wave speed are computed for different values of governing parameters. It is found that the system becomes more stable with increasing Darcy–Rayleigh number corresponding to linear density variation with respect to temperature and the Darcy–Prandtl number.

References

1.
Gill
,
A. E.
,
1969
, “
A Proof That Convection in a Porous Vertical Slab is Stable
,”
J. Fluid Mech.
,
35
(
3
), pp.
545
547
.10.1017/S0022112069001273
2.
Straughan
,
B.
,
1988
, “
A Nonlinear Analysis of Convection in a Porous Vertical Slab
,”
Geophys. Astrophys. Fluid Dyn.
,
42
(
3–4
), pp.
269
275
.10.1080/03091928808213611
3.
Rees
,
D. A. S.
,
1988
, “
The Stability of Prandtl–Darcy Convection in a Vertical Porous Slot
,”
Int. J. Heat Mass Transfer
,
31
(
7
), pp.
1529
1534
.10.1016/0017-9310(88)90260-8
4.
Lewis
,
S.
,
Bassom
,
A. P.
, and
Rees
,
D. A. S.
,
1995
, “
The Stability of Vertical Thermal Boundary Layer Flow in a Porous Medium
,”
Eur. J. Mech. B
,
14
(
4
), pp.
395
408
5.
Rees
,
D. A. S.
,
2011
, “
The Effect of Local Thermal Nonequilibrium on the Stability of Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
87
(
2
), pp.
459
464
.10.1007/s11242-010-9694-5
6.
Scott
,
N. L.
, and
Straughan
,
B.
,
2013
, “
A Nonlinear Stability Analysis of Convection in a Porous Vertical Channel Including Local Thermal Nonequilibrium
,”
J. Math. Fluid Mech.
,
15
(
1
), pp.
171
178
.10.1007/s00021-012-0109-y
7.
Barletta
,
A.
,
Alves
,
D. B.
, and
S
,
L.
,
2014
, “
On Gill's Stability Problem for Non-Newtonian Darcy's Flow
,”
Int. J. Heat Mass Transfer
,
79
, pp.
759
768
.10.1016/j.ijheatmasstransfer.2014.08.051
8.
Barletta
,
A.
,
2015
, “
A Proof That Convection in a Porous Vertical Slab May Be Unstable
,”
J. Fluid Mech.
,
770
, pp.
273
288
.10.1017/jfm.2015.154
9.
Barletta
,
A.
,
2016
, “
Instability of Stationary Two-Dimensional Mixed Convection Across a Vertical Porous Layer
,”
Phy. Fluids
,
28
(
1
), p.
014101
.10.1063/1.4939287
10.
Shankar
,
B. M.
,
Kumar
,
J.
, and
Shivakumara
,
I. S.
,
2017
, “
Stability of Natural Convection in a Vertical Layer of Brinkman Porous Medium
,”
Acta Mech.
,
228
(
1
), pp.
1
19
.10.1007/s00707-016-1690-6
11.
Shankar
,
B. M.
,
Kumar
,
J.
, and
Shivakumara
,
I. S.
,
2017
, “
Boundary and Inertia Effects on the Stability of Natural Convection in a Vertical Layer of an Anisotropic Lapwood-Brinkman Porous Medium
,”
Acta Mech.
,
228
(
6
), pp.
2269
2282
.10.1007/s00707-017-1831-6
12.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2017
, “
On the Stability of Natural Convection in a Porous Vertical Slab Saturated With an Oldroyd-B Fluid
,”
Theor. Comput. Fluid Dyn.
,
31
(
3
), pp.
221
231
.10.1007/s00162-016-0415-8
13.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2017
, “
Effect of Local Thermal Nonequilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid Saturated Vertical Porous Layer
,”
ASME J. Heat Transfer
,
139
(
4
), p.
041001
.10.1115/1.4035199
14.
Poulikakos
,
D.
,
1985
, “
Natural Convection in a Confined Fluid-Filled Space Driven by a Single Vertical Wall With Warm and Cold Regions
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
867
876
.10.1115/1.3247515
15.
Lankford
,
K., E.
, and
Bejan
,
A.
,
1986
, “
Natural Convection in a Vertical Enclosure Filled With Water Near 4 °C
,”
ASME J. Heat Transfer
,
108
(
4
), pp.
755
763
.10.1115/1.3247009
16.
Saeid
,
N., H.
, and
Pop
,
I.
,
2004
, “
Maximum Density Effects on Natural Convection From a Discrete Heater in a Cavity Filled With a Porous Medium
,”
Acta Mech.
,
171
(
3–4
), pp.
203
212
.10.1007/s00707-004-0142-x
17.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, 5th ed.,
Springer
,
New York
.
18.
Poulikakos
,
D.
,
1984
, “
Maximum Density Effects on Natural Convection in a Porous Layer Differentially Heated in the Horizontal Direction
,”
Int. J. Heat Mass Transfer
,
27
(
11
), pp.
2067
2075
.10.1016/0017-9310(84)90193-5
19.
Lin
,
D. S.
, and
Nansteel
,
M. W.
,
1987
, “
Natural Convection in a Vertical Annulus Containing Water Near the Density Maximum
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
899
905
.10.1115/1.3248201
20.
Ho
,
C. J.
, and
Lin
,
Y. H.
,
1990
, “
Natural Convection of Cold Water in a Vertical Annulus With Constant Heat Flux on the Inner Wall
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
117
123
.10.1115/1.2910332
21.
Singer
,
B. A.
,
Ferziger
,
J. H.
, and
Reed
,
H. L.
,
1989
, “
Numerical Simulations of Transition in Oscillatory Plane Channel Flow
,”
J. Fluid Mech.
,
208
, pp.
45
66
.10.1017/S0022112089002764
22.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2018
, “
Stability of Penetrative Natural Convection in a Non-Newtonian Fluid-Saturated Vertical Porous Layer
,”
Transp. Porous Media
,
124
(
2
), pp.
395
411
.10.1007/s11242-018-1074-6
23.
Straughan
,
B.
,
2004
,
The Energy Method, Stability, and Nonlinear Convection
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.