Abstract

This article communicates on the ferrofluid flow over a spinning disk in the presence of highly oscillating magnetic field. The flow is presumed to be unsteady. Ferrous nanoparticles are suspended within base medium water. This investigation reveals how presence and absence of oscillating magnetic field influence the hydrothermal basis of the flow. Also, the effects of particles diameter and solid–liquid interfacial layer have been precisely incorporated to reveal the thermal integrity of the system. Shliomis theory is introduced to frame the leading equations of the system. Resulting equations have been solved using innovative spectral quasi-linearization method (SQLM). Residual error analysis is included to explore the advantage of such computational scheme. The influence of dynamic parameters on the velocities and temperature is deliberated through graphs and tables. Several 3D pictures and contour plots are depicted to extract the key points of the flow. The results exhibit that heat transfer is reduced for nanoparticle diameter but amplifies for base liquid nanolayer conductivity ratio and elevated field frequency enhances the temperature. Relative magnetization reduces for high field frequency, but increases for angular displacement. SQLM exhibits an accurate computational scheme with fast convergence.

References

References
1.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamics
,
Cambridge University Press
,
Cambridge
, UK. 
2.
Odenbach
,
S.
,
1993
, “
Magnetic Fluids
,”
Adv. Colloid Interface Sci.
,
46
, pp.
263
282
.10.1016/0001-8686(93)80043-B
3.
Ram
,
P.
,
Bhandari
,
A.
, and
Sharma
,
K.
,
2010
, “
Effect of Magnetic Field-Dependent Viscosity on Revolving Ferrofluid
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3476
3480
.10.1016/j.jmmm.2010.06.048
4.
Engel
,
A.
,
Muller
,
H. W.
,
Reimann
,
P.
, and
Jung
,
A.
,
2003
, “
Ferrofluids as Thermal Ratchets
,”
Phys. Rev. Lett.
,
91
(
6
), p.
060602
.10.1103/PhysRevLett.91.060602
5.
Odenbach
,
S.
,
2003
,
Magnetoviscous Effects in Ferrofluids
,
Springer
, Berlin.
6.
Sheikholeslami
,
M.
, and
Ellahi
,
R.
,
2015
, “
Simulation of Ferrofluid Flow for Magnetic Drug Targeting Using Lattice Boltzmann Method
,”
Z. Naturforsch. A
,
70
(
2
), pp.
115
124
.
7.
Zeeshan
,
A.
,
Majeed
,
A.
, and
Ellahi
,
R.
,
2016
, “
Unsteady Ferromagnetic Liquid Flow and Heat Transfer Analysis Over a Stretching Sheet With the Effect of Dipole and Prescribed Heat Flux
,”
J. Mol. Liq.
,
223
, pp.
528
533
.10.1016/j.molliq.2016.07.145
8.
Rinaldi
,
C.
,
Chaves
,
A.
,
Elborai
,
S.
,
He
,
X. T.
, and
Zahn
,
M.
,
2005
, “
Magnetic Fluid Rheology and Flows
,”
Curr. Opin. Colloid Interface Sci.
,
10
(
3–4
), pp.
141
157
.10.1016/j.cocis.2005.07.004
9.
Ram
,
P.
, and
Kumar
,
V.
,
2012
, “
Ferrofluid Flow With Magnetic Field Dependent Viscosity Due to Rotating Disk in Porous Medium
,”
Int. J. Appl. Mech.
,
4
(
4
), p.
1250041
.10.1142/S175882511250041X
10.
Shliomis
,
M. I.
, and
Morozov
,
K. I.
,
1994
, “
Negative Viscosity of Ferrofluid Under Alternating Magnetic Field
,”
Phys. Fluids
,
6
(
8
), pp.
2855
2861
.10.1063/1.868108
11.
Ram
,
P.
, and
Sharma
,
K.
,
2011
, “
Revolving Ferrofluid Flow Under the Influence of MFD Viscosity and Porosity With Rotating Disk
,”
J. Electromagnet. Anal. Appl.
,
3
(
9
), pp.
378
386
.10.4236/jemaa.2011.39060
12.
Ram
,
P.
,
Joshi
,
V. K.
, and
Makinde
,
O. D.
,
2017
, “
Unsteady Convective Flow of Hydrocarbon Magnetite Nano-Suspension in the Presence of Stretching Effects
,”
Defect Diffus. Forum
,
377
, pp.
155
165
.10.4028/www.scientific.net/DDF.377.155
13.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows, ASME, Vol.
66, pp. 99–105. 
14.
Fang
,
T.
, and
Tao
,
H.
,
2012
, “
Unsteady Viscous Flow Over a Rotating Stretchable Disk With Deceleration
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5064
5072
.10.1016/j.cnsns.2012.04.017
15.
Rashidi
,
M. M.
,
Ali
,
M.
,
Freidoonimehr
,
N.
, and
Nazari
,
F.
,
2013
, “
Parametric Analysis and Optimization of Entropy Generation in Unsteady MHD Flow Over a Stretching Rotating Disk Using Artificial Neural Network and Particle Swarm Optimization Algorithm
,”
Energy
,
55
, pp.
497
510
.10.1016/j.energy.2013.01.036
16.
Mustafa
,
M.
,
2017
, “
MHD Nanofluid Flow Over a Rotating Disk With Partial Slip Effects: Buongiorno Model
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1910
1916
.10.1016/j.ijheatmasstransfer.2017.01.064
17.
Turkyilmazoglu
,
M.
,
2018
, “
Fluid Flow and Heat Transfer Over a Rotating and Vertically Moving Disk
,”
Phys. Fluids
,
30
(
6
), p.
063605
.10.1063/1.5037460
18.
Wahed
,
M. A.
, and
Akl
,
M.
,
2016
, “
Effect of Hall Current on MHD Flow of a Nanofluid With Variable Properties Due to a Rotating Disk With Viscous Dissipation and Nonlinear Thermal Radiation
,”
AIP Adv.
,
6
(
9
), p.
095308
.10.1063/1.4962961
19.
Ren
,
Q.
,
2019
, “
Enhancement of Nanoparticle-Phase Change Material Melting Performance Using a Sinusoidal Heat Pipe
,”
Energy Converse. Manage.
,
180
, pp.
784
795
.10.1016/j.enconman.2018.11.033
20.
Ren
,
Q.
,
Meng
,
F.
, and
Guo
,
P.
,
2018
, “
A Comparative Study of PCM Melting Process in a Heat Pipe-Assisted LHTES Unit Enhanced With Nanoparticles and Metal Foams by Immersed Boundary-Lattice Boltzmann Method at Pore-Scale
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1214
1228
.10.1016/j.ijheatmasstransfer.2018.01.046
21.
Acharya
,
N.
,
2019
, “
Active-Passive Controls of Liquid di-Hydrogen Mono-Oxide Based Nanofluidic Transport Over a Bended Surface
,”
Int. J. Hydrogen Energy
,
44
(
50
), pp.
27600
27614
.10.1016/j.ijhydene.2019.08.191
22.
Acharya
,
N.
,
Maity
,
S.
, and
Kundu
,
P. K.
,
2019
, “
Framing the Hydrothermal Features of Magnetized TiO2–CoFe2O4 Water-Based Steady Hybrid Nanofluid Flow Over a Radiative Revolving Disk
,”
Multidiscip. Model. Mater. Struct.
, 6(4), epub.https://www.emerald.com/insight/content/doi/10.1108/MMMS-08-2019-0151/full/html
23.
Acharya
,
N.
,
2019
, “
On the Flow Patterns and Thermal Behaviour of Hybrid Nanofluid Flow Inside a Microchannel in Presence of Radiative Solar Energy
,”
J. Therm. Anal. Calorim.
, epub.10.1007/s10973-019-09111-w
24.
Acharya
,
N.
,
Bag
,
R.
, and
Kundu
,
P. K.
,
2020
, “
On the Mixed Convective Carbon Nanotube Flow Over a Convectively Heated Curved Surface
,”
Heat Transfer
,
49
(
4
), pp.
1713
1735
.10.1002/htj.21687
25.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2019
, “
Effects of Aggregation Kinetics on Nanoscale Colloidal Solution Inside a Rotating Channel: A Thermal Framework
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
461
477
.10.1007/s10973-019-08126-7
26.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2017
, “
Fabrication of Active and Passive Controls of Nanoparticles of Unsteady Nanofluid Flow From a Spinning Body Using HPM
,”
Eur. Phys. J. Plus
,
132
(
7
), p.
323
.10.1140/epjp/i2017-11629-y
27.
Acharya
,
N.
,
Bag
,
R.
, and
Kundu
,
P. K.
,
2019
, “
Influence of Hall Current on Radiative Nanofluid Flow Over a Spinning Disk: A Hybrid Approach
,”
Phys. E
,
111
, pp.
103
112
.10.1016/j.physe.2019.03.006
28.
Gul
,
T.
, and
Firdous
,
K.
,
2018
, “
The Experimental Study to Examine the Stable Dispersion of the Graphene Nanoparticles and to Look at the GO–H2O Nanofluid Flow Between Two Rotating Disks
,”
Appl. Nanosci.
,
8
(
7
), pp.
1711
1727
.10.1007/s13204-018-0851-4
29.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2018
, “
Influence of Electric Field on Fe3O4 Water Nanofluid Radiative and Convective Heat Transfer in a Permeable Enclosure
,”
J. Mol. Liq.
,
250
, pp.
404
412
.10.1016/j.molliq.2017.12.028
30.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Moradi
,
R.
,
2017
, “
Heat Transfer of Fe Water Nanofluid in a Permeable Medium With Thermal Radiation in Existence of Constant Heat Flux
,”
Chem. Eng. Sci.
,
174
, pp.
326
336
.10.1016/j.ces.2017.09.026
31.
Bacri
,
J. C.
,
Perzynski
,
R.
,
Shliomis
,
M. I.
, and
Burde
,
G. I.
,
1995
, “
Negative Viscosity Effect in a Magnetic Fluid
,”
Phys. Rev. Lett.
,
75
(
11
), pp.
2128
2131
.10.1103/PhysRevLett.75.2128
32.
Krekhov
,
A. P.
,
Shliomis
,
M. I.
, and
Kamiyama
,
S.
,
2005
, “
Ferrofluid Pipe Flow in Oscillating Magnetic Field
,”
Phys. Fluids
,
17
(
3
), p.
033105
.10.1063/1.1863320
33.
Ram
,
P.
,
Joshi
,
V. K.
,
Kumar
,
V.
, and
Sharma
,
S.
,
2019
, “
Rheological Effects Due to Oscillating Field on Time Dependent Boundary Layer Flow of Magnetic Nanofluid Over a Rotating Disk
,”
Proc. Natl. Acad. Sci., India, Sect. A
,
89
(
2
), pp.
367
375
.10.1007/s40010-017-0468-0
34.
Ellahi
,
R.
,
Tariq
,
M. H.
,
Hassan
,
M.
, and
Vafai
,
K.
,
2017
, “
On Boundary Layer Nano Ferrofluid Flow Under the Influence of Low Oscillating Stretchable Rotating Disk
,”
J. Mol. Liq.
,
229
, pp.
339
345
.10.1016/j.molliq.2016.12.073
35.
Hassan
,
M.
,
Zeeshan
,
A.
,
Majeed
,
A.
, and
Ellahi
,
R.
,
2017
, “
Particle Shape Effects on Ferrofuids Flow and Heat Transfer Under Influence of Low Oscillating Magnetic Field
,”
J. Magn. Magn. Mater.
,
443
, pp.
36
44
.10.1016/j.jmmm.2017.07.024
36.
Liu
,
W. I.
,
Alsarraf
,
J.
,
Shahsavar
,
A.
,
Rostamzadeh
,
M.
,
Afrand
,
M.
, and
Nguyen
,
T. K.
,
2019
, “
Impact of Oscillating Magnetic Field on the Thermal-Conductivity of Water-Fe3O4 and Water-Fe3O4/CNT Ferro-Fluids: Experimental Study
,”
J. Magn. Magn. Mater.
,
484
, pp.
258
265
.10.1016/j.jmmm.2019.04.042
37.
Hassan
,
M.
,
Fetecau
,
C.
,
Majeed
,
A.
, and
Zeeshan
,
A.
,
2018
, “
Effects of Iron Nanoparticles' Shape on Convective Flow of Ferrofluid Under Highly Oscillating Magnetic Field Over Stretchable Rotating Disk
,”
J. Magn. Magn. Mater.
,
465
, pp.
531
539
.10.1016/j.jmmm.2018.06.019
38.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
39.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
40.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
41.
Timofeeva
,
E. V.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2011
, “
Nanofluids for Heat Transfer: An Engineering Approach
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
182
.10.1186/1556-276X-6-182
42.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
43.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
.10.1007/s11051-005-9018-9
44.
Rana
,
P.
, and
Beg
,
O. A.
,
2015
, “
Mixed Convection Flow Along an Inclined Permeable Plate: Effect of Magnetic Field, Nanolayer Conductivity and Nanoparticle Diameter
,”
Appl. Nanosci.
,
5
(
5
), pp.
569
581
.10.1007/s13204-014-0352-z
45.
Rana
,
P.
,
Dhanai
,
R.
, and
Kumar
,
L.
,
2017
, “
MHD Slip Flow and Heat Transfer of Al2O3-Water Nanofluid Over a Horizontal Shrinking Cylinder Using Buongiorno's Model: Effect of Nanolayer and Nanoparticle Diameter
,”
Adv. Powder Technol.
,
28
(
7
), pp.
1727
1738
.10.1016/j.apt.2017.04.010
46.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
47.
Hashimoto
,
T.
,
Fujimura
,
M.
, and
Kawai
,
H.
,
1980
, “
Domain-Boundary Structure of Styrene-Isoprene Block Copolymer Films Cast From Solutions. 5. Molecular-Weight Dependence of Spherical Microdomains
,”
Macromolecules
,
13
(
6
), pp.
1660
1669
.10.1021/ma60078a055
48.
Li
,
Z. H.
,
Gong
,
Y. J.
,
Pu
,
M.
,
Wu
,
D.
,
Sun
,
Y. H.
,
Wang
,
J.
,
Liu
,
Y.
, and
Dong
,
B. Z.
,
2001
, “
Determination of Interfacial Layer Thickness of a Pseudo Two-Phase System by Extension of the Debye Equation
,”
J. Phys. D
,
34
(
14
), pp.
2085
2088
.10.1088/0022-3727/34/14/301
49.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2004
, “
Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4277
4284
.10.1016/j.ijheatmasstransfer.2004.05.016
50.
Yu
,
C. J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
,
2000
, “
Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study
,”
Phys. B
,
283
(
1–3
), pp.
27
31
.10.1016/S0921-4526(99)01885-2
51.
Dhlamini
,
M.
,
Kameswaran
,
P. K.
,
Sibanda
,
P.
,
Motsa
,
S.
, and
Mondal
,
H.
,
2019
, “
Activation Energy and Binary Chemical Reaction Effects in Mixed Convective Nanofluid Flow With Convective Boundary Conditions
,”
J. Comput. Des. Eng.
,
6
(
2
), pp.
149
158
.10.1016/j.jcde.2018.07.002
52.
Sithole
,
H.
,
Mondal
,
H.
, and
Sibanda
,
P.
,
2018
, “
Entropy Generation in a Second Grade Magnetohydrodynamic Nanofluid Flow Over a Convectively Heated Stretching Sheet With Nonlinear Thermal Radiation and Viscous Dissipation
,”
Results Phys.
,
9
, pp.
1077
1085
.10.1016/j.rinp.2018.04.003
53.
Das
,
S.
,
Mondal
,
H.
,
Kundu
,
P. K.
, and
Sibanda
,
P.
,
2019
, “
Spectral Quasi Linearization Method for Casson Fluid With Homogeneous Heterogeneous Reaction in Presence of Nonlinear Thermal Radiation Over an Exponential Stretching Sheet
,”
Multidiscip. Model. Mater. Struct.
,
15
(
2
), pp.
398
417
.10.1108/MMMS-04-2018-0073
54.
Bellman
,
R. E.
, and
Kalaba
,
R. E.
,
1965
, “
Quasilinearization and Nonlinear Boundary Value Problems
,”
Modern Analytic and Computational Methods in Science and Mathematics
, Vol.
3
,
Elsevier
,
New York
.
You do not currently have access to this content.