Abstract

Dimple on the surface is widely used in electronic cooling equipment, turbine blades, and combustion chamber gaskets and so on, which is a good structure for heat transfer enhancement. In this paper, taking comprehensive performance parameters of flow and heat transfer PEC as an evaluation parameter, numerical simulation, and multi-island genetic algorithm are combined to optimize the shape of the dimple in microchannel under fully developed laminar condition. The results show that the optimal dimple is asymmetric along the flow direction, and the deepest position of which shifts downstream, which is dependent on the Reynolds number, the dimple diameter, and the periodic length. With the increase of the Reynolds number and the dimple diameter, the Nusselt number ratio, the Fanning fraction factor ratio, and the comprehensive performance parameter PEC increase for the optimal dimple. The separation of the fluid in the front edge of dimple is not conducive to heat transfer. The number and size of the vortex, the impact, and the reattachment are found to be the key factors affecting the heat transfer in the dimple. As the periodic length L of the heat transfer unit decreases, the heat transfer is enhanced and the flow resistance increases, and the comprehensive performance of the microchannel becomes better.

References

1.
Faroogh
,
G.
,
Faraz
,
H.
, and
Mohammad
,
M. R.
,
2016
, “
Numerical Study of Heat Transfer Performance of Nanofluids in a Heat Exchanger
,”
Appl. Therm. Eng.
,
105
(
25
), pp.
436
455
.10.1016/j.applthermaleng.2016.03.015
2.
Faroogh
,
G.
,
Leila
,
J.
,
Mohammad
,
M. R.
,
Arash
,
B.
, and
Mohammad
,
E. A.
,
2015
, “
Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model
,”
Appl. Math. Comput.
,
254
, pp.
183
203
.10.1016/j.amc.2014.12.116
3.
Zhang
,
Z.
,
Xie
,
Y.
,
Zhang
,
D.
, and
Xie
,
G. N.
,
2017
, “
Flow Characteristic and Heat Transfer for Non-Newtonian Nanofluid in Rectangular Microchannels With Teardrop Dimples/Protrusions
,”
Open Phys.
,
15
(
1
), pp.
197
206
.10.1515/phys-2017-0021
4.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
5.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
.10.1115/1.2429711
6.
Kim
,
H. M.
,
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2011
, “
Multi-Objective Optimization of a Cooling Channel With Staggered Elliptic Dimples
,”
Energy
,
36
(
5
), pp.
3419
3428
.10.1016/j.energy.2011.03.043
7.
Silva
,
C.
,
Park
,
D.
,
Marotta
,
E.
, and
Fletcher
,
L.
,
2009
, “
Optimization of Fin Performance in a Laminar Channel Flow Though Dimpled Surface
,”
ASME J. Heat Transfer
,
131
(
2
), p.
021702
.10.1115/1.2994712
8.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Bernhard
,
W.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.10.1115/1.4029036
9.
Gururatana
,
S.
,
2012
, “
Numerical Simulation of Micro-Channel Heat Sink With Dimpled Surfaces
,”
Am. J. Appl. Sci.
,
9
(
3
), pp.
399
404
.10.3844/ajassp.2012.399.404
10.
Chen
,
Y.
,
Chew
,
Y. T.
, and
Khoo
,
B. C.
,
2012
, “
Enhancement of Heat Transfer in Turbulent Channel Flow Over Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
8100
8121
.10.1016/j.ijheatmasstransfer.2012.08.043
11.
Gong
,
L.
, and
Wei
,
B.
,
2013
, “
The Characteristics of Fluid Flow and Heat Transfer in Wavy, Dimple and Wavy-Dimple Microchannels
,”
Appl. Mech. Mater.
,
394
, pp.
173
178
.10.4028/www.scientific.net/AMM.394.173
12.
Isaev
,
S. A.
,
Guzeev
,
A. S.
,
Sapozhnikov
,
S. Z.
,
Mityakov
,
V. Y.
, and
Mityakov
,
A. V.
,
2015
, “
Visualization of a Flow in a Spherical Dimple Built in the Lower Wall of the Rectangular-Section Channel of a Water Tunnel and Numerical Identification of the Vortex-Jet Structures in It
,”
J. Eng. Phys. Thermophys.
,
88
(
2
), pp.
452
470
.10.1007/s10891-015-1210-x
13.
Isaev
,
S. A.
,
Schelchkov
,
A. V.
,
Leontiev
,
A. I.
,
Gortyshov
,
Y. F.
,
Baranov
,
P. A.
, and
Popov
,
I. A.
,
2017
, “
Vortex Heat Transfer Enhancement in the Narrow Plane-Parallel Channel With the Oval-Trench Dimple of Fixed Depth and Spot Area
,”
Int. J. Heat Mass Transfer
,
109
, pp.
40
62
.10.1016/j.ijheatmasstransfer.2017.01.103
14.
Xu
,
M. H.
,
Lu
,
H.
,
Gong
,
L.
,
Chai
,
J. C.
, and
Duan
,
X. Y.
,
2016
, “
Parametric Numerical Study of the Flow and Heat Transfer in Microchannel With Dimples
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
348
357
.10.1016/j.icheatmasstransfer.2016.06.002
15.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
.10.1016/j.ijheatmasstransfer.2016.09.037
16.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
.10.1016/j.applthermaleng.2017.01.098
17.
Leontiev
,
A. I.
,
Kiselev
,
N. A.
,
Vinogradov
,
Y. A.
,
Strongin
,
M. M.
,
Zditovets
,
A. G.
, and
Burtsev
,
S. A.
,
2017
, “
Experimental Investigation of Heat Transfer and Drag on Surfaces Coated With Dimples of Different Shape
,”
Int. J. Therm. Sci.
,
118
, pp.
152
167
.10.1016/j.ijthermalsci.2017.04.027
18.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
L.
, and
Wang
,
Y. L.
,
2018
, “
A Numerical Study on Heat Transfer Enhancement and Flow Structure in Enhanced Tube With Cross Ellipsoidal Dimples
,”
Int. J. Heat Mass Transfer
,
125
, pp.
434
444
.10.1016/j.ijheatmasstransfer.2018.04.106
19.
Wang
,
S. T.
,
Du
,
W.
,
Luo
,
L.
,
Qiu
,
D. D.
,
Zhang
,
X. H.
, and
Li
,
S. Z.
,
2018
, “
Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel With a Bleed Hole in Dimple at Different Orientations and Locations
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1216
1230
.10.1016/j.ijheatmasstransfer.2017.10.087
20.
Li
,
P.
,
Luo
,
Y. Y.
,
Zhang
,
D.
, and
Xie
,
Y. H.
,
2018
, “
Flow and Heat Transfer Characteristics and Optimization Study on the Water-Cooled Microchannel Heat Sinks With Dimple and Pin-Fin
,”
Int. J. Heat Mass Transfer
,
119
, pp.
152
162
.10.1016/j.ijheatmasstransfer.2017.11.112
21.
Li
,
P.
,
Zhang
,
D.
,
Xie
,
Y. H.
, and
Xie
,
G. N.
,
2016
, “
Flow Structure and Heat Transfer of Non-Newtonian Fluids in Microchannel Heat Sinks With Dimples and Protrusions
,”
Appl. Therm. Eng.
,
94
, pp.
50
58
.10.1016/j.applthermaleng.2015.10.119
22.
Li
,
P.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2016
, “
Laminar Flow and Forced Convective Heat Transfer of Shear-Thinning Power-Law Fluids in Dimpled and Protruded Microchannels
,”
Int. J. Heat Mass Transfer
,
99
, pp.
372
382
.10.1016/j.ijheatmasstransfer.2016.04.004
23.
Zheng
,
L.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2017
, “
Numerical Investigation on Heat Transfer Performance and Flow Characteristics in a Rectangular Air Cooling Channel (AR = 2) With Ridged Dimples
,”
Int. J. Heat Mass Transfer
,
107
, pp.
403
417
.10.1016/j.ijheatmasstransfer.2016.11.039
24.
Zheng
,
L.
,
Zhang
,
D.
,
Xie
,
Y. H.
, and
Xie
,
G. N.
,
2016
, “
Thermal Performance of Dimpled/Protruded Circular and Annular Microchannel Tube Heat Sink
,”
J. Taiwan Inst. Chem. Eng.
,
60
, pp.
342
351
.10.1016/j.jtice.2015.10.026
25.
Isaev
,
S. A.
,
Leonardi
,
E.
,
Timchenko
,
V.
, and
Usachev
,
A. E.
,
2010
, “
Vortical Intensification of Heat Transfer in Microchannels With Oval Dimples
,”
Heat Transfer Res.
,
41
(
4
), pp.
413
424
.10.1615/HeatTransRes.v41.i4.50
26.
Chen
,
G. L.
,
Wang
,
X. F.
,
Zhuang
,
Z. Q.
, and
Wang
,
D. S.
,
1996
,
Genetic Algorithm and Its Application
,
Post Telecom Press
,
Beijing, China
.
27.
Nejat
,
A.
,
Mirzakhalili
,
E.
,
Aliakbari
,
A.
,
Niasar
,
M. S. F.
, and
Vahidkhah
,
K.
,
2012
, “
Non-Newtonian Power-Law Fluid Flow and Heat Transfer Computation Across a Pair of Confined Elliptical Cylinders in the Line Array
,”
J. Non-Newtonian Fluid Mech.
,
171–172
, pp.
67
82
.10.1016/j.jnnfm.2012.01.007
28.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
29.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
, 4th ed.,
Higher Education Press
,
Beijing, China
.
30.
Kim
,
N.-H.
, and
Webb
,
R. L.
,
1994
,
Principles of Enhanced Heat Transfer
,
Taylor & Francis
,
New York
.
31.
Helcio
,
R. B. O.
,
2011
, “
Inverse Heat Transfer Problems
,”
Heat Transfer Eng.
,
32
(
9
), pp.
715
717
.10.1080/01457632.2011.525128
32.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
33.
Chehouri
,
A.
,
Younes
,
R.
,
Ilinca
,
A.
, and
Jean
,
P.
,
2015
, “
Review of Performance Optimization Techniques Applied to Wind Turbines
,”
Appl. Energy
,
142
, pp.
361
388
.10.1016/j.apenergy.2014.12.043
34.
Zhao
,
D. J.
,
Wang
,
Y. K.
,
Cao
,
W. W.
, and
Zhou
,
P.
,
2015
, “
Optimization of Suction Control on an Airfoil Using Multi-Island Genetic Algorithm
,”
Procedia Eng.
,
99
, pp.
696
702
.10.1016/j.proeng.2014.12.591
You do not currently have access to this content.