Abstract

The effect of surface roughness on the thermohydraulics in minichannels has been studied numerically. Fluid flow (at low Reynolds number) through a typical three-dimensional (3D) channel subjected to constant heat flux (at the bottom) is analyzed incorporating surface roughness on the solid–fluid interfaces characterized by its true random and nonperiodic nature. Two different approaches are adopted to model the rough channel surfaces. Topographic measurements have been performed on a stainless steel minichannel using an optical surface profilometer (OSP) to generate digital replica of the rough surface. Alternatively, the Gaussian function defined by two statistical parameters, namely average roughness (Ra) and correlation length (Cl), are employed to imitate the random nature of rough interface. At the outset, conjugate heat transfer simulations have been performed on the rough channel models and the results are validated against the experimental data. Finally, the effect of surface roughness on both local and global nondimensional performance parameters is analyzed and compared with findings from simulations performed on a similar smooth channel. The outcomes reveal an enhanced friction factor for flow over a rough surface, attributable to the near wall shear rate fluctuations experienced by the flow. Unlike smooth channels, the local Nusselt number (Nuy) exhibits continuous fluctuations along the channel axial length. The fully developed (Nufd) and the average (Nu¯) counterparts of the Nusselt number show enhanced magnitudes when compared to the theoretical predictions of the same in a smooth surface channel. This amplification can be attributed to two simultaneously acting factors: augmentation in heat transfer area and chaotic mixing due to flow perturbation. The magnitude of enhancement in terms of fully developed Nusselt number (Nufd) is roughly 1.3 times of its corresponding value in a smooth channel and the factor remains invariant of the supplied heat.

References

1.
Moody
,
L.
,
1944
, “
Friction Factors for Pipe  Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
678
.http://www.ipt.ntnu.no/~asheim/TPG4135/Moody.pdf
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages-Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
3.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels–A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.10.1615/AnnualRevHeatTransfer.v13.30
4.
Dixit
,
T.
, and
Ghosh
,
I.
,
2015
, “
Review of Micro- and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids
,”
Renew. Sustainable Energy Rev.
,
41
, pp.
1298
1311
.10.1016/j.rser.2014.09.024
5.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
6.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.10.1115/1.4005126
7.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on ‘New Results in Micro-Fluid Mechanics’: An Example
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
935
937
.10.1016/S0017-9310(02)00306-X
8.
Guo
,
Z.
, and
Li
,
Z.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Trans.,
46
(
1
), pp.
149
159
 .
9.
Ghosh
,
I.
,
Sarangi
,
S. K.
, and
Das
,
P. K.
,
2007
, “
Simulation Algorithm for Multistream Plate Fin Heat Exchangers Including Axial Conduction, Heat Leakage, and Variable Fluid Property
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
884
893
.10.1115/1.2717938
10.
Kroeger
,
P. G.
,
1967
, “
Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Heat Conduction Effects
,”
Adv. Cryogenic Eng.
,
12
, pp.
363
373
.10.1007/978-1-4757-0489-1_38
11.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
12.
Croce
,
G.
, and
D'Agaro
,
P.
,
2004
, “
Numerical Analysis of Roughness Effect on Microtube Heat Transfer
,”
Superlatt. Microstruct.
,
35
(
3–6
), pp.
601
616
.10.1016/j.spmi.2003.09.014
13.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2009
, “
Modelling of Roughness Effects on Heat Transfer in Thermally Fully-Developed Laminar Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2203
2214
.10.1016/j.ijthermalsci.2009.04.006
14.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
,
2003
, “
Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
871
879
.10.1115/1.1598993
15.
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2004
, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
1
9
.10.1115/1.1637633
16.
Heck
,
M. L.
, and
Papavassiliou
,
D. V.
,
2013
, “
Effects of Hydrophobicity-Inducing Roughness on Micro-Flows
,”
Chem. Eng. Commun.
,
200
(
7
), pp.
919
934
.10.1080/00986445.2012.729543
17.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Peterson
,
G. P.
,
2009
, “
Role of Surface Roughness Characterized by Fractal Geometry on Laminar Flow in Microchannels
,”
Phys. Rev. E Stat. Nonlinear, Soft Matter Phys.
,
80
(
2
), pp.
1
7
.10.1103/PhysRevE.80.026301
18.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2D Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
190
201
.10.1016/j.ijheatmasstransfer.2012.10.004
19.
Shen
,
S.
,
Xu
,
J. L.
,
Zhou
,
J. J.
, and
Chen
,
Y.
,
2006
, “
Flow and Heat Transfer in Microchannels With Rough Wall Surface
,”
Energy Convers. Manag.
,
47
(
11–12
), pp.
1311
1325
.10.1016/j.enconman.2005.09.001
20.
Li
,
Z.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2007
, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3447
3460
.10.1016/j.ijheatmasstransfer.2007.01.016
21.
Grohmann
,
S.
,
2005
, “
Measurement and Modeling of Single-Phase and Flow-Boiling Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4073
4089
.10.1016/j.ijheatmasstransfer.2005.04.008
22.
Liu
,
Z.
,
Zhang
,
C.
,
Huo
,
Y.
, and
Zhao
,
X.
,
2007
, “
Flow and Heat Transfer in Rough Micro Steel Tubes
,”
Exp. Heat Transfer
,
20
(
4
), pp.
289
306
.10.1080/08916150701418278
23.
Celata
,
G. P.
,
Cumo
,
M.
,
McPhail
,
S. J.
, and
Zummo
,
G.
,
2007
, “
Single-Phase Laminar and Turbulent Heat Transfer in Smooth and Rough Microtubes
,”
Microfluid. Nanofluid.
,
3
(
6
), pp.
697
707
.10.1007/s10404-007-0162-7
24.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.10.1016/S0017-9310(00)00045-4
25.
Rahman
,
M. M.
,
2000
, “
Measurements of Heat Transfer in Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
27
(
4
), pp.
495
506
.10.1016/S0735-1933(00)00132-9
26.
Dixit
,
T.
, and
Ghosh
,
I.
,
2013
, “
Low Reynolds Number Thermo-Hydraulic Characterization of Offset and Diamond Minichannel Metal Heat Sinks
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
227
238
.10.1016/j.expthermflusci.2013.08.002
27.
Shah
,
R. K.
,
1975
, “
Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
849
862
.10.1016/0017-9310(75)90176-3
28.
Spiga
,
M.
, and
Morini
,
G. L.
,
1996
, “
Nusselt Numbers in Laminar Flow for H2 Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1165
1174
.10.1016/0017-9310(95)00205-7
29.
Morini
,
G. L.
,
2000
, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts With Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
741
755
.10.1016/S0017-9310(99)00188-X
30.
COMSOL, 2019, “
COMSOL Multiphysics®
,” COMSOL AB, Stockholm, Sweden, accessed Mar. 15, 2019, http://www.comsol.com 
31.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
,
Salerno, Italy
, July 2–4, pp.
129
136
32.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
33.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interficial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
(
4
), pp.
824
832
.10.1115/1.2927341
34.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2005
, “
Pressure Drop of Fully–Developed Laminar Flow in Rough Microtubes
,”
Third International Conference Microchannels Minichannels (ICMM)
,
Toronto, ON
, June 13–15, pp.
1
10
.
35.
Guo
,
L.
,
Xu
,
H.
, and
Gong
,
L.
,
2015
, “
Influence of Wall Roughness Models on Fluid Flow and Heat Transfer in Microchannels
,”
Appl. Therm. Eng.
,
84
, pp.
399
408
.10.1016/j.applthermaleng.2015.04.001
36.
Hu
,
Y. Z.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
(
1–2
), pp.
83
90
.10.1016/0890-6955(92)90064-N
37.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
38.
Moharana
,
M. K.
,
Singh
,
P. K.
, and
Khandekar
,
S.
,
2012
, “
Optimum Nusselt Number for Simultaneously Developing Internal Flow Under Conjugate Conditions in a Square Microchannel
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071703
.10.1115/1.4006110
39.
Koşar
,
A.
,
2010
, “
Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
4
), pp.
635
642
.10.1016/j.ijthermalsci.2009.11.004
40.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. R.
,
2012
, “
Laminar Flow
,”
Fluid Mechanics
, 5th ed.,
Academic Press
,
Cambridge, MA
, Chap. 8, pp.
309
359
41.
Massey
,
B. S.
, and
Ward-Smith
,
A. J.
,
1998
, “
Laminar Flow between Solid Boundaries
,”
Mechanics of Fluids
, 7th ed.,
CRC Press
,
Cleveland, OH
, pp.
204
258
.
42.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Ma
,
D.
,
Cai
,
B.
, and
Wang
,
J.
,
2017
, “
Effect of Geometric Configuration on the Laminar Flow and Heat Transfer in Microchannel Heat Sinks With Cavities and Fins
,”
Numer. Heat Transfer Part A Appl.
,
71
(
5
), pp.
528
546
.10.1080/10407782.2016.1277940
43.
Xiong
,
R.
, and
Chung
,
J. N.
,
2010
, “
A New Model for Three-Dimensional Random Roughness Effect on Friction Factor and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3284
3291
.10.1016/j.ijheatmasstransfer.2010.02.050
You do not currently have access to this content.