Abstract

In his seminal work, Grad not only derived 13 moment equations but also suggested two problems to check his derived equations. These problems are highly instructive as they bring out the character of the equations by examining their solutions to these problems. In this work, we propose Grad's second problem as the potential benchmark problem for checking the accuracy of different sets of higher-order transport equations. The problem definition can be stated as: examination of steady-state solution for a gas at rest in infinite domain upon application of a one-dimensional heat flux. With gas at rest (no bulk velocity), the interest lies in obtaining the solution for pressure and temperature. The problem is particularly interesting with respect to the solution for pressure when Maxwell and hard-sphere molecules are considered. For Maxwell molecules, it is well known that the exact normal solution of Boltzmann equation gives uniform pressure with no stresses in the flow domain. In the case of hard-sphere molecules, direct simulation Monte Carlo (DSMC) results predict nonuniform pressure field giving rise to stresses in the flow domain. The simplistic nature of the problem and interesting results for pressure for different interaction potentials makes it an ideal test problem for examining the accuracy of higher-order transport equations. The proposed problem is solved within the framework of Burnett hydrodynamics for hard-sphere and Maxwell molecules. For hard-sphere molecules, it is observed that the Burnett order stresses do not become zero; they rather give rise to a pressure gradient in a direction opposite to that of temperature gradient, consistent with the DSMC results. For Maxwell molecules, the numerical solution of Burnett equations predicts uniform pressure field and one-dimensional temperature field, consistent with the exact normal solution of the Boltzmann equation.

References

1.
Burnett
,
D.
,
1936
, “
The Distribution of Molecular  Velocities and the Mean Motion in a Non-Uniform Gas
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
382
435
.10.1112/plms/s2-40.1.382
2.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
,
Cambridge University Press
,
Cambridge, UK
3.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.10.1002/cpa.3160020403
4.
Grad
,
H.
,
1958
,
Principles of the Kinetic Theory of Gases
,
Springer
,
Berlin
, pp.
205
294
.
5.
Singh
,
N.
,
Dongari
,
N.
, and
Agrawal
,
A.
,
2014
, “
Analytical Solution of Plane Poiseuille Flow Within Burnett Hydrodynamics
,”
Microfluid. Nanofluid.
,
16
(
1–2
), pp.
403
412
.10.1007/s10404-013-1224-7
6.
Singh
,
N.
, and
Agrawal
,
A.
,
2014
, “
The Burnett Equations in Cylindrical Coordinates and Their Solution for Flow in a Microtube
,”
J. Fluid Mech.
,
751
, pp.
121
141
.10.1017/jfm.2014.290
7.
Rath
,
A.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2018
, “
A Perturbation-Based Solution of Burnett Equations for Gaseous Flow in a Long Microchannel
,”
J. Fluid Mech.
,
844
, pp.
1038
1051
.10.1017/jfm.2018.233
8.
Xue
,
H.
,
Ji
,
H.
, and
Shu
,
C.
,
2001
, “
Analysis of Micro-Couette Flow Using the Burnett Equations
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
4139
4146
.10.1016/S0017-9310(01)00062-X
9.
Lockerby
,
D. A.
, and
Reese
,
J. M.
,
2003
, “
High-Resolution Burnett Simulations of Micro Couette Flow and Heat Transfer
,”
J. Comput. Phys.
,
188
(
2
), pp.
333
347
.10.1016/S0021-9991(03)00162-1
10.
Marques
,
W.
, Jr.
, and
Kremer
,
G.
,
2001
, “
Couette Flow From a Thirteen Field Theory With Slip and Jump Boundary Conditions
,”
Continuum Mech. Thermodyn.
,
13
(
3
), pp.
207
217
.10.1007/s001610100051
11.
Uribe
,
F.
, and
Garcia
,
A.
,
1999
, “
Burnett Description for Plane Poiseuille Flow
,”
Phys. Rev. E
,
60
(
4
), pp.
4063
4078
.10.1103/PhysRevE.60.4063
12.
Jadhav
,
R. S.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2017
, “
Force-Driven Compressible Plane Poiseuille Flow by Onsager-Burnett Equations
,”
Phys. Fluids
,
29
(
10
), p.
102002
.10.1063/1.4999420
13.
FaghriHongwei Sun
,
M.
,
2000
, “
Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC
,”
Numer. Heat Transfer, Part A
,
38
(
2
), pp.
153
168
.10.1080/10407780050135388
14.
Park
,
J. H.
,
Baek
,
S. W.
,
Kang
,
S. J.
, and
Yu
,
M. J.
,
2002
, “
Analysis of Thermal Slip in Oscillating Rarefied Flow Using DSMC
,”
Numer. Heat Transfer, Part A
,
42
(
6
), pp.
647
659
.10.1080/10407780290059747
15.
John
,
B.
,
Gu
,
X.-J.
, and
Emerson
,
D. R.
,
2010
, “
Investigation of Heat and Mass Transfer in a Lid-Driven Cavity Under Nonequilibrium Flow Conditions
,”
Numer. Heat Transfer, Part B
,
58
(
5
), pp.
287
303
.10.1080/10407790.2010.528737
16.
Uribe
,
F. J.
,
Velasco
,
R. M.
, and
García-Colín
,
L. S.
,
1998
, “
Burnett Description of Strong Shock Waves
,”
Phys. Rev. Lett.
,
81
(
10
), pp.
2044
2047
.10.1103/PhysRevLett.81.2044
17.
Grad
,
H.
,
1952
, “
The Profile of a Steady Plane Shock Wave
,”
Commun. Pure Appl. Math.
,
5
(
3
), pp.
257
300
.10.1002/cpa.3160050304
18.
Weiss
,
W.
,
1995
, “
Continuous Shock Structure in Extended Thermodynamics
,”
Phys. Rev. E
,
52
(
6
), pp.
R5760
R5763
.10.1103/PhysRevE.52.R5760
19.
Asmolov
,
E. S.
,
Makashev
,
N. K.
, and
Nosik
,
V. I.
,
1979
, “
Heat Transfer Between Plane Parallel Plates in a Gas of Maxwellian Molecules
,”
Akademiia Nauk SSSR Dokl.
,
249
, pp.
577
580
.
20.
Montanero
,
J.
,
Alaoui
,
M.
,
Santos
,
A.
, and
Garzó
,
V.
,
1994
, “
Monte Carlo Simulation of the Boltzmann Equation for Steady Fourier Flow
,”
Phys. Rev. E
,
49
(
1
), pp.
367
375
.10.1103/PhysRevE.49.367
21.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2019
,
Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics
,
Springer
,
Cham, Switzerland
.
22.
Singh
,
N.
,
Gavasane
,
A.
, and
Agrawal
,
A.
,
2014
, “
Analytical Solution of Plane Couette Flow in the Transition Regime and Comparison With Direct Simulation Monte Carlo Data
,”
Comput. Fluids
,
97
, pp.
177
187
.10.1016/j.compfluid.2014.03.032
23.
Santos
,
A.
,
2009
, “
Solutions of the Moment Hierarchy in the Kinetic Theory of Maxwell Models
,”
Continuum Mech. Thermodyn.
,
21
(
5
), pp.
361
387
.10.1007/s00161-009-0113-5
24.
Bobylev
,
A.
,
1982
, “
The Chapman-Enskog and Grad Methods for Solving the Boltzmann Equation
,”
Akademiia Nauk SSSR Dokl.
,
262
, pp.
71
75
.
25.
Comeaux
,
K. A.
,
Chapman
,
D. R.
, and
MacCormack
,
R. W.
,
1995
, “
An Analysis of the Burnett Equations Based on the Second Law of Thermodynamics
,”
33rd Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, p.
415
.10.2514/6.1995-415
26.
Garcia-Colin
,
L.
,
Velasco
,
R.
, and
Uribe
,
F.
,
2008
, “
Beyond the Navier–Stokes Equations: Burnett Hydrodynamics
,”
Phys. Rep.
,
465
(
4
), pp.
149
189
.10.1016/j.physrep.2008.04.010
27.
Balakrishnan
,
R.
,
1999
, “
Entropy Consistent Formulation and Numerical Simulation of the BGK-Burnett Equations for Hypersonic Flows in the Continuum-Transition Regime
,” Ph.D. thesis,
Wichita State University
, Wichita, KA.
28.
Balakrishnan
,
R.
,
2004
, “
An Approach to Entropy Consistency in Second-Order Hydrodynamic Equations
,”
J. Fluid Mech.
,
503
, pp.
201
245
.10.1017/S0022112004007876
29.
Agarwal
,
R. K.
,
Yun
,
K.-Y.
, and
Balakrishnan
,
R.
,
2001
, “
Beyond Navier–Stokes: Burnett Equations for Flows in the Continuum-Transition Regime
,”
Phys. Fluids
,
13
(
10
), pp.
3061
3085
.10.1063/1.1397256
30.
Singh
,
N.
,
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2017
, “
Derivation of Stable Burnett Equations for Rarefied Gas Flows
,”
Phys. Rev. E
,
96
(
1
), p.
013106
.10.1103/PhysRevE.96.013106
31.
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2008
, “
Survey on Measurement of Tangential Momentum Accommodation Coefficient
,”
J. Vac. Sci. Technol. A
,
26
(
4
), pp.
634
645
.10.1116/1.2943641
You do not currently have access to this content.