Abstract

In this article, we study numerically the effect of the variation of the vessel's radius on the distribution of flow velocity and temperature for four solvents with different dielectric properties, frequently used in organic chemistry: water, toluene, ethanol, and methanol, when they are irradiated with microwaves at 2.45 GHz. We use a multidimensional axisymmetric numerical model based on spectral element methods for solving heat and momentum equations coupled with Maxwell's equations. The varied dielectric behavior of the solvents results in a different behavior when the size of the vessel varies: from solvents for which the variation of the radius has little effect, as in the case of toluene due to its high penetration depth, to high absorbing solvents, with smaller penetration depth as ethanol, for which the effect of the radius is determinant for the distribution of the power absorption and, consequently, for the temperature and flow in the sample. Results are interesting as they provide a full description and understanding of the velocity and temperature distribution in the flow depending on the sample size and the dielectric properties of the solvents, becoming an important tool for prediction when parameters in the experiments are varied.

References

1.
De la Hoz
,
A.
, and
Loupy
,
A.
,
2012
,
Microwaves in Organic Synthesis
,
Wiley-VCH
,
Weinheim, Germany
.
2.
Leadbeater
,
N. E.
,
2014
, “
Organic Synthesis Using Microwave Heating
,”
Comprehensive Organic Synthesis II
,
Elsevier Ltd
.,
Oxford, UK
, pp.
234
286
.
3.
Kappe
,
C. O.
, and
Stadler
,
A.
,
2012
,
Microwaves in Organic and Medicinal Chemistry
,
Wiley
,
Weinheim, Germany
.
4.
Kappe
,
C. O.
,
2008
, “
Microwave Dielectric Heating in Synthetic Organic Chemistry
,”
Chem. Soc. Rev.
,
37
, pp.
1127
1139
.10.1039/b803001b
5.
Stefanidis
,
G. D.
,
Muñoz
,
A. N.
,
Sturm
,
G. S. J.
, and
Stankiewicz
,
A.
,
2014
, “
A Helicopter View of Microwave Application to Chemical Processes: Reactions, Separations, and Equipment Concepts
,”
Rev. Chem. Eng.
,
30
, pp.
233
259
.10.1515/revce-2013-0033
6.
De la Hoz
,
A.
,
Díaz-Ortiz
,
A.
, and
Moreno
,
A.
,
2005
, “
Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects
,”
Chem. Soc. Rev.
,
34
(
2
), pp.
164
178
.10.1039/B411438H
7.
Ravichadran
,
S.
, and
Karthikeyan
,
E.
,
2011
, “
Microwave Synthesis—A Potential Tool for Green Chemistry
,”
Int. J. Chem. Tech. Res.
,
3
(
1
), pp.
466
470
.
8.
Gabriel
,
C.
,
Gabriel
,
S.
,
Grant
,
E. H.
,
Halstead
,
B. S.
, and
Mingos
,
D. M. P.
,
1998
, “
Dielectric Parameters Relevant to Microwave Dielectric Heating
,”
Chem. Soc. Rev.
,
27
(
3
), pp.
213
224
.10.1039/a827213z
9.
Pangrle
,
B. J.
,
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
,
1991
, “
Microwave Thawing of Cylinders
,”
AIChE J.
,
37
(
12
), pp.
1789
1800
.10.1002/aic.690371204
10.
Oliveira
,
M. E. C.
, and
Franca
,
A. S.
,
2002
, “
Microwave Heating of Foodstuffs
,”
J. Food Eng.
,
53
(
4
), pp.
347
359
.10.1016/S0260-8774(01)00176-5
11.
Campañone
,
L. A.
, and
Zaritzky
,
N. E.
,
2005
, “
Mathematical Analysis of Microwave Heating
,”
J. Food Eng.
,
69
(
3
), pp.
359
368
.10.1016/j.jfoodeng.2004.08.027
12.
Campañone
,
L. A.
, and
Zaritzky
,
N. E.
,
2010
, “
Mathematical Modeling and Simulation of Microwave Thawing of Large Solid Foods Under Different Operating Conditions
,”
Food Bioprocess. Technol.
,
3
(
6
), pp.
813
825
.10.1007/s11947-009-0249-0
13.
Yang
,
H. W.
, and
Gunasekaran
,
S.
,
2001
, “
Temperature Profiles in a Cylindrical Model Food During Pulsed Microwave Heating
,”
J. Food Sci.
,
66
(
7
), pp.
998
1004
.10.1111/j.1365-2621.2001.tb08225.x
14.
Mao
,
W.
,
Watanabe
,
M.
, and
Sakai
,
N.
,
2005
, “
Analysis of Temperature Distributions in Kamaboko During Microwave Heating
,”
J. Food Eng.
,
71
(
2
), pp.
187
192
.10.1016/j.jfoodeng.2004.10.045
15.
Campañone
,
L. A.
,
Paola
,
C. A.
, and
Mascheroni
,
R. H.
,
2012
, “
Modeling and Simulation of Microwave Heating of Foods Under Different Process Schedules
,”
Food Bioprocess. Technol.
,
5
(
2
), pp.
738
749
.10.1007/s11947-010-0378-5
16.
Fan
,
D.
,
Li
,
C.
,
Li
,
Y.
,
Chen
,
W.
,
Zhao
,
J.
,
Hu
,
M.
, and
Zhang
,
H.
,
2014
, “
Experimental Analysis and Numerical Modeling of Microwave Reheating of Cylindrically Shaped Instant Rice
,”
Int. J. Food Eng.
,
10
(
1
), pp.
59
67
.10.1515/ijfe-2012-0085
17.
Yousefi
,
T.
,
Mousavi
,
S. A.
,
Saghir
,
M. Z.
, and
Farahbakhsh
,
B.
,
2013
, “
An Investigation on the Microwave Heating of Flowing Water: A Numerical Study
,”
Int. J. Therm. Sci.
,
71
, pp.
118
127
.10.1016/j.ijthermalsci.2013.04.006
18.
Salvi
,
D.
,
Boldor
,
D.
,
Aita
,
G. M.
, and
Sabliov
,
C. M.
,
2011
, “
COMSOL Multiphysics Model for Continuous Flow Microwave Heating Liquids
,”
J. Food Eng.
,
104
(
3
), pp.
422
429
.10.1016/j.jfoodeng.2011.01.005
19.
Tuta
,
S.
, and
Palazoğlu
,
T. K.
,
2017
, “
Finite Element Modeling of Continuous-Flow Microwave Heating of Fluid Foods and Experimental Validation
,”
J. Food Eng.
,
192
, pp.
79
92
.10.1016/j.jfoodeng.2016.08.003
20.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
,
2002
, “
A Numerical and Experimental Investigation of the Modeling of Microwave Heating for Liquid Layers Using a Rectangular Wave Guide (Effects of Natural Convection and Dielectric Properties)
,”
Appl. Math. Modell.
,
26
(
3
), pp.
449
472
.10.1016/S0307-904X(01)00046-4
21.
Cha-Um
,
W.
,
Rattanadecho
,
P.
, and
Pakdee
,
W.
,
2011
, “
Experimental and Numerical Analysis of Microwave Heating of Water and Oil Using a Rectangular Wave Guide: Influence of Sample Sizes, Position, and Microwave Power
,”
Food Bioprocess Technol.
,
4
(
4
), pp.
544
558
.10.1007/s11947-009-0187-x
22.
Yakovlev
,
V. V.
,
2005
, “
Examination of Contemporary Electromagnetic Software Capable of Modeling Problems of Microwave Heating
,”
Advances in Microwave and Radio Frequency Processing
,
M.
Willert-Porada
, ed.,
Springer Verlag
, Berlin, pp.
178
190
23.
Navarro
,
M. C.
, and
Burgos
,
J.
,
2017
, “
A Spectral Method for Numerical Modeling of Radial Microwave Heating in Cylindrical Samples With Temperature Dependent Dielectric Properties
,”
Appl. Math. Model.
,
43
, pp.
268
278
.10.1016/j.apm.2016.10.062
24.
Navarro
,
M. C.
,
Díaz-Ortiz
,
A.
,
Prieto
,
P.
, and
de la Hoz
,
A.
,
2019
, “
A Spectral Numerical Model and an Experimental Investigation on Radial Microwave Irradiation of Water an Ethanol in a Cylindrical Vessel
,”
Appl. Math. Model.
,
66
, pp.
680
694
.10.1016/j.apm.2018.09.035
25.
Chatterjee
,
S.
,
Basak
,
T.
, and
Sarit
,
K. D.
,
2007
, “
Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study
,”
J. Food Eng.
,
79
(
4
), pp.
1269
1279
.10.1016/j.jfoodeng.2006.04.039
26.
Prosetya
,
H.
, and
Datta
,
A.
,
1991
, “
Batch Microwave Heating of Liquids: An Experimental Study
,”
J. Microwave Power Electromagnetic Energy
,
26
(
4
), pp.
215
216
.10.1080/08327823.1991.11688160
27.
Datta
,
A.
,
Prosetya
,
H.
, and
Hu
,
W.
,
1992
, “
Mathematical Modeling of Batch Heating of Liquids in a Microwave Cavity
,”
J. Microwave Power Electromagn. Energy
,
27
(
1
), pp.
38
48
.10.1080/08327823.1992.11688169
28.
Franca
,
A. S.
,
K.
, and
Haghighi
,
K.
,
1996
, “
Adaptative Finite Element Analysis of Microwave Driven Convection
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
177
186
.10.1016/0735-1933(96)00004-8
29.
Kapranov
,
S. V.
, and
Kouzaev
,
G. A.
,
2017
, “
Models of Water, Methanol, and Ethanol and Their Applications in the Design of Miniature Microwave Heating Reactors
,”
Int. J. Therm. Sci.
,
122
, pp.
53
73
.10.1016/j.ijthermalsci.2017.08.007
30.
Horikoshi
,
S.
,
Matsuzaki
,
S.
,
Mitani
,
T.
, and
Serpone
,
N.
,
2012
, “
Microwave Frequency Effects on Dielectric Properties of Some Common Solvents and on Microwave-Assisted Syntheses: 2-Allyphenol and the C12C2C12 Gemini Surfactant
,”
Radiat. Phys. Chem.
,
81
, pp.
1885
1895
.10.1016/j.radphyschem.2012.07.011
31.
Liao
,
X.
,
Raghavan
,
G. S. V.
, and
Yaylayan
,
V. A.
,
2001
, “
Dielectric Properties of Alcohols (C1C5) at 2450 MHz and 915 MHz
,”
J. Mol. Liq.
,
94
(
1
), pp.
51
60
.10.1016/S0167-7322(01)00241-0
32.
Balanis
,
C. A.
,
1989
,
Advanced Engineering Electromagnetics
,
Wiley
,
New York
.
33.
Herrero
,
H.
, and
Mancho
,
A. M.
,
2002
, “
On Pressure Boundary Conditions for Thermoconvective Problems
,”
Int. J. Numer. Methods Fluids
,
39
(
5
), pp.
391
402
.10.1002/fld.317
34.
Navarro
,
M. C.
,
Mancho
,
A. M.
, and
Herrero
,
H.
,
2007
, “
Instabilities in Buoyant Flows Under Localized Heating
,”
Chaos
,
17
, p.
023105
.10.1063/1.2714295
35.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
Burlington, MA
.
36.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia
.
37.
Vargaftik
,
N. B.
,
1975
,
Handbook of Physical Properties of Liquids and Gases
,
Hemisphere
,
New York
.
38.
Zhang
,
H.
, and
Datta
,
A. K.
,
2003
, “
Microwave Power Absorption in Single- and Multiple-Item Foods
,”
Food Bioprod. Process.
,
81
(
3
), pp.
257
265
.10.1205/096030803322438027
You do not currently have access to this content.