Abstract

The droplet growth processes during dropwise condensation are simulated with the help of computer. We focus on instantaneous and time-averaged characteristics of droplet size distributions. Based on the simulation results, the shift of a single peak from a small to a large size represents a significant characteristic for the instantaneous distribution before the first departure. Coexistence, shift, and combination of multiple peaks are the dominant features when condensing surface was refreshed repeatedly by shedding droplets from place to place. This indicates that the instantaneous droplet size distribution depends heavily on the growth time and target area. These findings help to explain why different distribution characteristics were reported in the experiments. Unlike the instantaneous distribution, time-averaged size distributions for coalesced droplets follow a power-law style due to a collaboration of coalescence events and renucleation behaviors. However, the size range for the power-law distributions was affected by nucleation density, which requires an appropriate usage of the empirical or fractal model to theoretically predict the heat transfer rate of dropwise condensation. This work provides a comprehensive understanding of the instantaneous and time-averaged characteristics of droplet size distributions.

References

1.
Li
,
J.
,
Li
,
J.
,
Sun
,
J.
,
Feng
,
S.
, and
Wang
,
Z.
,
2019
, “
Biological and Engineered Topological Droplet Rectifiers
,”
Adv. Mater.
,
31
(
14
), p.
e1806501
.10.1002/adma.201806501
2.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.10.1557/mrs.2013.103
3.
Paxson
,
A. T.
,
Yague
,
J. L.
,
Gleason
,
K. K.
, and
Varanasi
,
K. K.
,
2014
, “
Stable Dropwise Condensation for Enhancing Heat Transfer Via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films
,”
Adv. Mater.
,
26
(
3
), pp.
418
423
.10.1002/adma.201303065
4.
Wen
,
R.
,
Ma
,
X.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2018
, “
Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond
,”
Joule
,
2
(
11
), pp.
2307
2347
.10.1016/j.joule.2018.08.014
5.
Xing
,
D.
,
Wu
,
F.
,
Wang
,
R.
,
Zhu
,
J.
, and
Gao
,
X.
,
2019
, “
Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops
,”
ACS Appl. Mater. Interfaces
,
11
(
7
), pp.
7553
7558
.10.1021/acsami.8b19868
6.
Damle
,
V. G.
,
Sun
,
X.
, and
Rykaczewski
,
K.
,
2015
, “
Can Metal Matrix-Hydrophobic Nanoparticle Composites Enhance Water Condensation by Promoting the Dropwise Mode?
,”
Adv. Mater. Interfaces
,
2
(
16
), p.
1500202
.10.1002/admi.201500202
7.
Mei
,
M.
,
Hu
,
F.
,
Han
,
C.
,
Sun
,
Y.
, and
Liu
,
D.
,
2017
, “
Influence of Contact Angle on Heat Flux in Dropwise  Condensation
,”
J. Xuzhou Inst. Technol.
,
32
(
4
), pp.
50
54
.10.15873/j.cnki.jxit.000188
8.
Niu
,
D.
,
Guo
,
L.
,
Hu
,
H. W.
, and
Tang
,
G. H.
,
2017
, “
Dropwise Condensation Heat Transfer Model Considering the Liquid-Solid Interfacial Thermal Resistance
,”
Int. J. Heat Mass Transfer
,
112
, pp.
333
342
.10.1016/j.ijheatmasstransfer.2017.04.061
9.
Ölçeroğlu
,
E.
,
Hsieh
,
C.-Y.
,
Rahman
,
M. M.
,
Lau
,
K. K. S.
, and
McCarthy
,
M.
,
2014
, “
Full-Field Dynamic Characterization of Superhydrophobic Condensation on Biotemplated Nanostructured Surfaces
,”
Langmuir
,
30
(
25
), pp.
7556
7566
.10.1021/la501063j
10.
Wen
,
R.
,
Li
,
Q.
,
Wu
,
J.
,
Wu
,
G.
,
Wang
,
W.
,
Chen
,
Y.
,
Ma
,
X.
,
Zhao
,
D.
, and
Yang
,
R.
,
2017
, “
Hydrophobic Copper Nanowires for Enhancing Condensation Heat Transfer
,”
Nano Energy
,
33
, pp.
177
183
.10.1016/j.nanoen.2017.01.018
11.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.10.1021/nn205052a
12.
Miljkovic
,
N.
,
Preston
,
D. J.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
7
(
12
), pp.
11043
11054
.10.1021/nn404707j
13.
Wen
,
R.
,
Xu
,
S.
,
Zhao
,
D.
,
Lee
,
Y. C.
,
Ma
,
X.
, and
Yang
,
R.
,
2017
, “
Hierarchical Superhydrophobic Surfaces With Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation
,”
ACS Appl. Mater. Interfaces
,
9
(
51
), pp.
44911
44921
.10.1021/acsami.7b14960
14.
Zhu
,
J.
,
Luo
,
Y.
,
Tian
,
J.
,
Li
,
J.
, and
Gao
,
X.
,
2015
, “
Clustered Ribbed-Nanoneedle Structured Copper Surfaces With High-Efficiency Dropwise Condensation Heat Transfer Performance
,”
ACS Appl. Mater. Interfaces
,
7
(
20
), pp.
10660
10665
.10.1021/acsami.5b02376
15.
Wen
,
R.
,
Lan
,
Z.
,
Peng
,
B.
,
Xu
,
W.
, and
Ma
,
X.
,
2015
, “
Droplet Dynamics and Heat Transfer for Dropwise Condensation at Lower and Ultra-Lower Pressure
,”
Appl. Therm. Eng.
,
88
, pp.
265
273
.10.1016/j.applthermaleng.2014.09.069
16.
Xu
,
W.
,
Lan
,
Z.
,
Liu
,
Q.
,
Du
,
B.
, and
Ma
,
X.
,
2018
, “
Droplet Size Distributions in Dropwise Condensation Heat Transfer: Consideration of Droplet Overlapping and Multiple Re-Nucleation
,”
Int. J. Heat Mass Transfer
,
127
, pp.
44
54
.10.1016/j.ijheatmasstransfer.2018.07.020
17.
Castillo
,
J. E.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
The Effect of Relative Humidity on Dropwise Condensation Dynamics
,”
Int. J. Heat Mass Transfer
,
80
, pp.
759
766
.10.1016/j.ijheatmasstransfer.2014.09.080
18.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.https://doi.org/10.1021/la061901+
19.
Macner
,
A. M.
,
Daniel
,
S.
, and
Steen
,
P. H.
,
2014
, “
Condensation on Surface Energy Gradient Shifts Drop Size Distribution Toward Small Drops
,”
Langmuir
,
30
(
7
), pp.
1788
1798
.10.1021/la404057g
20.
Ziegler
,
V. E.
, and
Wolf
,
B. A.
,
2005
, “
Bimodal Drop Size Distributions During the Early Stages of Shear Induced Coalescence
,”
Polymer
,
46
(
22
), pp.
9265
9273
.10.1016/j.polymer.2005.07.055
21.
Zheng
,
S.
,
Eimann
,
F.
,
Philipp
,
C.
,
Fieback
,
T.
, and
Gross
,
U.
,
2018
, “
Modeling of Heat and Mass Transfer for Dropwise Condensation of Moist Air and the Experimental Validation
,”
Int. J. Heat Mass Transfer
,
120
, pp.
879
894
.10.1016/j.ijheatmasstransfer.2017.12.059
22.
Tanasawa
,
I.
, and
Ochiai
,
J.-I.
,
1973
, “
Experimental Study of Dropwise Condensation
,”
Bull. JSME
,
16
(
98
), pp.
1184
1197
.10.1299/jsme1958.16.1184
23.
Tanaka
,
H.
,
1975
, “
Measurements of Drop-Size Distributions During Transient Dropwise Condensation
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
341
346
.10.1115/1.3450376
24.
Watanabe
,
N.
,
Aritomi
,
M.
, and
Machida
,
A.
,
2014
, “
Time-Series Characteristics and Geometric Structures of Drop-Size Distribution Density in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
76
, pp.
467
483
.10.1016/j.ijheatmasstransfer.2014.04.041
25.
Mei
,
M.
,
Hu
,
F.
,
Han
,
C.
, and
Cheng
,
Y.
,
2015
, “
Time-Averaged Droplet Size Distribution in Steady-State Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
88
, pp.
338
345
.10.1016/j.ijheatmasstransfer.2015.04.087
26.
Tanaka
,
H.
,
1975
, “
A Theoretical Study of Dropwise Condensation
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
72
78
.10.1115/1.3450291
27.
Burnside
,
B. M.
, and
Hadi
,
H. A.
,
1999
, “
Digital Computer Simulation of Dropwise Condensation From Equilibrium Droplet to Detectable Size
,”
Int. J. Heat Mass Transfer
,
42
(
16
), pp.
3137
3146
.10.1016/S0017-9310(98)00372-X
28.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081502
.10.1115/1.4003742
29.
Fritter
,
D.
,
Knobler
,
C. M.
, and
Beysens
,
D. A.
,
1991
, “
Experiments and Simulation of the Growth of Droplets on a Surface (Breath Figures)
,”
Phys. Rev. A
,
43
(
6
), pp.
2858
2869
.10.1103/PhysRevA.43.2858
30.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Proceeding of Third International Heat Transfer Conference
, Chicago, IL, Aug. 7–12, pp.
362
375
.http://www.ihtcdigitallibrary.com/conferences/537d40111c50a3ea,2f64a4516e5f3c02,5c75488f2a814cd4.html
31.
Yu
,
B.
, and
Li
,
J.
,
2001
, “
Some Fractal Characters of Porous Media
,”
Fractals
,
9
(
3
), pp.
365
372
.10.1142/S0218348X01000804
32.
Mei
,
M.
,
Yu
,
B.
,
Cai
,
J.
, and
Luo
,
L.
,
2009
, “
A Fractal Analysis of Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4823
4828
.10.1016/j.ijheatmasstransfer.2009.06.013
You do not currently have access to this content.