Abstract

Nowadays, laser and nanotechnology have drawn more attention in the field of noninvasive cancer treatment with precise ablation of tumor preserving the surrounding healthy tissue. Besides, the assessment of viscoelastic deformation within the tissue can estimate the thermally induced nociceptive pain during laser therapy. This study deals with a laser-assisted in vitro thermal analysis on vascular tissue phantom doped with gold nanorods along with a comparative study with numerical results. The prediction of tissue thermomechanical response under laser heating also has been made. Both Pennes and dual-phase-lag bioheat equations coupled with equilibrium equations are solved using comsolmultiphysics (Bangalore, India). The aim is to create a comparative study between intratumoral (IT) and intravenous (IV) infusion schemes of nanoparticles in terms of thermal and mechanical behavior. The in vitro heating of tissue phantom with IT scheme provides more control over the spreading of necrotic temperature in terms of precise damage of the targeted area, preserving the surrounding nontargeted area. Predicted results show a reduced overall thermal deformation of the nanoparticle doped tissue model with the IT scheme depicting a stiffer thermoelastic response comparing the model doped with the IV scheme. The simultaneous heating and cooling shows a viscoelastic nature of biotissue. However, under cyclic heating and cooling of the tissue model embedded in a large blood vessel (LBV) depicts a smaller sized stress–strain hysteresis loop. Nevertheless, the present findings can help to understand the thermo-mechanical behavior of tissue during clinical photothermal therapy.

References

1.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
,
2019
, “
Cancer Statistics, 2019
,”
CA-Cancer J. Clin.
,
69
(
1
), pp.
7
34
.10.3322/caac.21551
2.
Floudas
,
C. S.
,
Brar
,
G.
, and
Greten
,
T. M.
,
2019
, “
Immunotherapy: Current Status and Future Perspectives
,”
Dig. Dis. Sci.
,
64
(
4
), pp.
1030
1040
.10.1007/s10620-019-05516-7
3.
Wrobel
,
S.
,
Przybylo
,
M.
, and
Stepien
,
E.
,
2019
, “
The Clinical Trial Landscape for Melanoma Therapies
,”
J. Clin. Med.
,
8
(
3
)368, pp.
1
14
.10.3390/jcm8030368
4.
Paul
,
A.
, and
Paul
,
A.
,
2018
, “
Computational Study of Photo-Thermal Ablation of Large Blood Vessel Embedded Tumor Using Localized Injection of Gold Nanoshells
,”
J. Therm. Biol.
,
78
, pp.
329
342
.10.1016/j.jtherbio.2018.10.021
5.
Paul
,
A.
, and
Paul
,
A.
,
2020
, “
Thermomechanical Analysis of a Triple Layered Skin Structure in Presence of Nanoparticle Embedding Multi-Level Blood Vessels
,”
Int. J. Heat Mass Transfer
,
148
, p.
119076
.10.1016/j.ijheatmasstransfer.2019.119076
6.
Knights
,
O. B.
, and
McLaughlan
,
J. R.
,
2018
, “
Gold Nanorods for Light-Based Lung Cancer Theranostics
,”
Int. J. Mol. Sci.
,
19
(
11
), p.
3318
.10.3390/ijms19113318
7.
Maltzahn
,
G. V.
,
Park
,
J.
,
Agarwal
,
A.
,
Bandaru
,
N. K.
,
Das
,
S. K.
,
Sailor
,
M. J.
, and
Bhatia
,
S. N.
,
2009
, “
Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas
,”
Cancer Res.
,
69
(
9
), pp.
3892
3900
.10.1158/0008-5472.CAN-08-4242
8.
Ganguly
,
M.
, and
Mitra
,
K.
,
2015
, “
A Modeling Study to Analyze Thermal and Mechanical Effects of Pulsed Laser Irradiation on Tissues
,”
Comput. Therm. Sci.
,
7
(
5–6
), pp.
459
465
.10.1615/ComputThermalScien.2016015252
9.
Aweda
,
M. A.
,
Agida
,
M.
,
Dada
,
M.
,
Awojoyogbe
,
O. B.
,
Isah
,
K.
,
Faromika
,
O. P.
,
Boubaker
,
K. B. M.
,
De
,
K.
, and
Ojambati
,
O. S.
,
2012
, “
Boubaker Polynomials Expansion Scheme Solution to the Heat Transfer Equation Inside Laser Heated Biological Tissues
,”
ASME J. Heat Transfer
,
134
(
6
), p.
064503
.10.1115/1.4005744
10.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Elicabe
,
G. E.
,
2017
, “
Particle Filter and Approximation Error Model for State Estimation in Hyperthermia
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012001
.10.1115/1.4034064
11.
Dua
,
R.
, and
Chakraborty
,
S.
,
2005
, “
A Novel Modeling and Simulation Technique of Photo–Thermal Interactions Between Lasers and Living Biological Tissues Undergoing Multiple Changes in Phase
,”
Comput. Biol. Med.
,
35
(
5
), pp.
447
462
.10.1016/j.compbiomed.2004.02.005
12.
Sajjadi
,
A. Y.
,
Mitra
,
K.
, and
Zhixiong
,
G.
,
2013
, “
Thermal Analysis and Experiments of Laser–Tissue Interactions: A Review
,”
Heat Transfer Res.
,
44
(
3–4
), pp.
345
390
.10.1615/HeatTransRes.2012006425
13.
Jacques
,
S.
,
1991
, “
How Tissue Optics Affect Dosimetry for Photochemical, Photothermal and Photomechanical Mechanics of Laser Tissue Interaction
,”
Proc. SPIE
1599
, pp.
316
322
.10.1117/12.2322297
14.
Saccomandi
,
P.
,
Schena
,
E.
,
Caponero
,
M. A.
,
Matteo
,
F.
,
Martino
,
M.
,
Pandolfi
,
M.
, and
Silvestri
,
S.
,
2012
, “
Theoretical Analysis and Experimental Evaluation of Laser-Induced Interstitial Thermotherapy in Ex Vivo Porcine Pancreas
,”
IEEE Trans. Biomed. Eng.
,
59
(
10
), pp.
2958
2964
.10.1109/TBME.2012.2210895
15.
Jain
,
P. K.
,
Lee
,
K. S.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2006
, “
Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7238
7248
.10.1021/jp057170o
16.
Jacques
,
S. L.
,
2013
, “
Optical Properties of Biological Tissues: A Review
,”
Phys. Med. Biol.
,
58
(
11
), pp.
R37
R61
.10.1088/0031-9155/58/11/R37
17.
Komatsu
,
T.
,
Nakamura
,
K.
,
Okumura
,
Y.
, and
Konishi
,
K.
,
2018
, “
Optimal Method of Gold Nanoparticle Administration in Melanoma–Bearing Mice
,”
Exp. Ther. Med.
,
15
, pp.
2994
2999
.10.3892/etm.2018.5746
18.
Yook
,
S.
,
Cai
,
Z.
,
Lu
,
Y.
,
Winnik
,
M. A.
,
Pignol
,
J.
, and
Reilly
,
R.
,
2016
, “
Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy With Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer
,”
J. Nucl. Med.
,
57
(
6
), pp.
936
942
.10.2967/jnumed.115.168906
19.
Paul
,
A.
,
Narasimhan
,
A.
,
Kahlen
,
F. J.
, and
Das
,
S. K.
,
2014
, “
Temperature Evolution in the Tissues Embedded With Large Blood Vessels During Photo-Thermal Heating
,”
J. Therm. Biol.
,
41
, pp.
77
87
.10.1016/j.jtherbio.2014.02.010
20.
Banerjee
,
A.
,
Ogale
,
A. A.
,
Das
,
C.
,
Mitra
,
K.
, and
Subramanian
,
C.
,
2005
, “
Temperature Distribution in Different Materials Due to Short Pulse Laser Irradiation
,”
Heat Transfer Eng.
,
26
, pp.
41
49
.10.1080/01457630591003754
21.
Cho
,
S. H.
,
2009
, “
Development of Tissue-Equivalent Heat-Sensitive Gel for the Experimental Verification of Near Infrared (NIR) Laser-Mediated Cancer Detection and Therapy
,” M.S. thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
22.
Jaunich
,
M.
,
Raje
,
S.
,
Kim
,
K.
,
Mitra
,
K.
, and
Guo
,
Z.
,
2008
, “
Bio-Heat Transfer Analysis During Short Pulse Laser Irradiation of Tissues
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5511
5521
.10.1016/j.ijheatmasstransfer.2008.04.033
23.
He
,
Z. Z.
,
Xue
,
X.
, and
Liu
,
J.
,
2013
, “
An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071003
.10.1115/1.4024064
24.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
25.
Verma
,
A. K.
,
Rath
,
P.
, and
Mahapatra
,
S. K.
,
2017
, “
Assessment of Thermal Damage During Skin Tumor Treatment Using Thermal Wave Model: A Realistic Approach
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051102
.10.1115/1.4036015
26.
Udayraj
,
P.
,
Talukdar
,
R.
,
Alagirusamy
,
A.
, and
Das
,
2014
, “
Heat Transfer Analysis and Second Degree Burn Prediction in Human Skin Exposed to Flame and Radiant Heat Using Dual Phase Lag Phenomenon
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1068
1079
.10.1016/j.ijheatmasstransfer.2014.07.073
27.
Paul
,
J. A.
,
2005
, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
189
193
.10.1115/1.1844540
28.
Kumar
,
S.
, and
Srivastava
,
A.
,
2015
, “
Thermal Analysis of Laser-Irradiated Tissue Phantoms Using Dual Phase Lag Model Coupled With Transient Radiative Transfer Equation
,”
Int. J. Heat Mass Transfer
,
90
, pp.
466
479
.10.1016/j.ijheatmasstransfer.2015.06.077
29.
Narasimhan
,
A.
, and
Sadasivam
,
S.
,
2013
, “
Non-Fourier Bio Heat Transfer Modelling of Thermal Damage During Retinal Laser Irradiation
,”
Int. J. Heat Mass Transfer
,
60
, pp.
591
597
.10.1016/j.ijheatmasstransfer.2013.01.010
30.
Xu
,
F.
, and
Lu
,
T.
,
2011
,
Introduction to Skin Biothermomechanics and Thermal Pain
,
Science Press
,
Beijing
.
31.
Montienthong
,
P.
, and
Rattanadecho
,
P.
,
2019
, “
Focused Ultrasound Ablation for the Treatment of Patients With Localized Deformed Breast Cancer: Computer Simulation
,”
ASME J. Heat Transfer
,
141
(
10
), p.
101101
.10.1115/1.4044393
32.
LeBrun
,
A.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2017
, “
Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051101
.10.1115/1.4035246
33.
Park
,
C. S.
,
Liu
,
C.
,
Hall
,
S. K.
, and
Payne
,
S. J.
,
2018
, “
A Thermoelastic Deformation Model of Tissue Contraction During Thermal Ablation
,”
Int. J. Hyperthermia
,
34
(
3
), pp.
221
228
.10.1080/02656736.2017.1335441
34.
Shen
,
Y.
,
Zhang
,
A.
, and
Xu
,
L.
,
2009
, “
A Study on Mechanical Damage of Tumor Microvasculature Induced by Alternate Cooling and Heating
,”
ASME J. Heat Transfer
,
1
, p.
031002
.10.1115/1.4000582
35.
Srivastava
,
A.
,
Verma
,
Y.
,
Rao
,
K.
, and
Gupta
,
P.
,
2011
, “
Determination of Elastic Properties of Resected Human Breast Tissue Samples Using Optical Coherence Tomographic Elastography
,”
Int. J. Exp. Mech.
,
47
(
1
), pp.
75
87
.10.1111/j.1475-1305.2009.00627.x
36.
Hermanns-Le
,
T.
,
Uhoda
,
I.
,
Smitz
,
S.
, and
Pierard
,
G. E.
,
2004
, “
Skin Tensile Properties Revisited During Ageing. Where Now, Where Next?
,”
J. Cosmet. Dermatol.
,
3
(
1
), pp.
35
40
.10.1111/j.1473-2130.2004.00057.x
37.
Wang
,
Z.
,
Golob
,
M. J.
, and
Chesler
,
N. C.
,
2016
,
Viscoelastic Properties of Cardiovascular Tissues
,
IntechOpen
,
London
, Chap. 7.
38.
Welch
,
A.
,
1984
, “
The Thermal Response of Laser Irradiated Tissue
,”
IEEE J. Quantum Electron.
,
20
(
12
), pp.
1471
1481
.10.1109/JQE.1984.1072339
39.
Shrivastava
,
D.
, and
Roemer
,
R.
,
2005
, “
An Analytical Study of Heat Transfer in a Finite Tissue Region With Two Blood Vessels and General Dirichlet Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4090
4102
.10.1016/j.ijheatmasstransfer.2005.04.005
40.
Bhowmik
,
A.
,
Singh
,
R.
,
Repaka
,
R.
, and
Mishra
,
S. C.
,
2013
, “
Conventional and Newly Developed Bioheat Transport Models in Vascularized Tissues: A Review
,”
J. Therm. Biol.
,
38
(
3
), pp.
107
125
.10.1016/j.jtherbio.2012.12.003
41.
Wongchadakul
,
P.
,
Rattanadecho
,
P.
, and
Wessapan
,
T.
,
2018
, “
Implementation of a Thermomechanical Model to Simulate Laser Heating in Shrinkage Tissue (Effects of Wavelength, Laser Irradiation Intensity, and Irradiation Beam Area)
,”
Int. J. Therm. Sci.
,
134
, pp.
321
326
.10.1016/j.ijthermalsci.2018.08.008
42.
Singh
,
R.
,
Das
,
K.
, and
Mishra
,
S. C.
,
2014
, “
Laser-Induced Hyperthermia of Nanoshell Mediated Vascularized Tissue—A Numerical Study
,”
J. Therm. Biol.
,
44
, pp.
55
62
.10.1016/j.jtherbio.2014.07.001
43.
Li
,
X.
,
Zhong
,
Y.
,
Jazar
,
R.
, and
Subic
,
A.
,
2014
, “
Thermal-Mechanical Deformation Modelling of Soft Tissues for Thermal Ablation
,”
Biomed. Mater. Eng.
,
24
(
6
), pp.
2299
2310
.10.3233/BME-141043
44.
Ritchie
,
K. P.
,
Keller
,
B. M.
,
Syed
,
K. M.
, and
Lepock
,
J. R.
,
1994
, “
Hyperthermia (Heat Shock)-Induced Protein Denature-Tion in Liver, Muscle and Lens Tissue as Determined by Differential Scanning Calorimetry
,”
Int. J. Hyperthermia
,
10
(
5
), pp.
605
618
.10.3109/02656739409022441
45.
Simanovskii
,
D. M.
,
Mackanos
,
M. A.
,
Irani
,
A. R.
,
O'Connell-Rodwell
,
C. E.
,
Contag
,
C. H.
,
Schwettman
,
H. A.
, and
Palanker
,
D. V.
,
2006
, “
Cellular Tolerance to Pulsed Hyperthermia
,”
Phys. Rev. E
,
74
(
1
), p.
011915
.10.1103/PhysRevE.74.011915
46.
Huang
,
X.
, and
El-Sayed
,
M. A.
,
2011
, “
Plasmonic Photo-Thermal Therapy (PPTT)
,”
Alexandria J. Med.
,
47
(
1
), pp.
1
9
.10.1016/j.ajme.2011.01.001
47.
Li
,
X.
,
Zhong
,
Y.
, and
Gu
,
C.
,
2017
, “
Heating Analysis of Soft Tissue at Finite Deformation During Thermal Ablation
,”
J. Mech. Med. Biol.
,
17
(
7
), p.
1740041
.10.1142/S0219519417400413
You do not currently have access to this content.