Abstract

As a liquid evaporates into its vapor, the vapor phase leaves at a higher velocity than the approaching liquid and exerts a net momentum force on the evaporating interface. This force is especially relevant in the contact line region where liquid temperature is higher than the bulk liquid, and local saturation temperature is reduced due to curvature effects. These factors result in an increased evaporative flux resulting in higher evaporation momentum force that can influence the interface motion and bubble trajectory. This force provides a new mechanism for enhancing boiling heat transfer by altering the individual bubble trajectory. In microchannels, it can lead to flow instability. These effects are critically evaluated in this paper and their relevance to bubble growth and heat transfer phenomena during pool and flow boiling is presented. Two nondimensional groups K1 and K2, respectively, representing the ratio of evaporation momentum force to inertia and surface tension forces, have been used in modeling heat transfer and interface motion. Evaporation momentum force has been successfully applied in modeling critical heat flux (CHF) in pool and flow boiling, analyzing instability during flow boiling in microchannels, controlling individual bubble motion, and enhancing CHF and heat transfer coefficient (HTC) during boiling on flat surfaces as well as tubular geometries.

References

1.
Goddard
,
R.
,
1920
, “
A Method of Reaching Extreme Altitudes
,”
Nature
,
105
(
2652
), pp.
809
811
.10.1038/105809a0
2.
Palmer
,
H. J.
,
1976
, “
The Hydrodynamic Stability of Rapidly Evaporating Liquids at Reduced Pressure
,”
J. Fluid Mech.
,
75
(
03
), pp.
487
489
.10.1017/S0022112076000347
3.
Renee
,
G.
, and
Roger
,
P.
,
2001
,
Mechanical and Thermodynamical Modeling of Fluid Interfaces, 2. Gas-Liquid Models—Mathematical Models
(Series in Advances in Mathematics for Applied Science), Vol.
58
,
World Scientific
,
Singapore
, pp.
157
203
.
4.
Steinchen
,
A.
, and
Sefiane
,
K.
,
1996
, “
Stability Analysis of the Pool-Boiling Crisis
,”
J. Phys. Condens. Matter
,
8
(
47
), pp.
9565
9568
.10.1088/0953-8984/8/47/063
5.
Katto
,
V.
, and
Yokoya
,
S.
,
1968
, “
Principal Mechanism of Boiling Crisis in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
11
(
6
), pp.
993
1002
.10.1016/0017-9310(68)90005-7
6.
Dhir
,
V. K.
, and
Liaw
,
S. P.
,
1989
, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
739
746
.10.1115/1.3250745
7.
Lay
,
J. H.
, and
Dhir
,
V. K.
,
1995
, “
Shape of a Vapor Stem During Nucleate Boiling of Saturated Liquids
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
394
401
.10.1115/1.2822535
8.
Sefiane
,
K.
,
Benielli
,
A.
, and
Steinchen
,
A.
,
1998
, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf., A
,
142
(
2–3
), pp.
361
373
.10.1016/S0927-7757(98)00614-1
9.
Nikolayev
,
V. S.
, and
Beysens
,
D. A.
,
1999
, “
Boiling Crisis and Non-Equilibrium Drying Transition
,”
Europhys. Lett.
,
47
(
3
), pp.
345
351
.10.1209/epl/i1999-00395-x
10.
Nikolayev
,
V. S.
,
Beysens
,
D. A.
,
Lagier
,
G.-L.
, and
Hegseth
,
J.
,
2001
, “
Growth of a Dry Spot Under a Vapor Bubble at High Heat Flux and High Pressure
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3499
3511
.10.1016/S0017-9310(01)00024-2
11.
Kandlikar
,
S. G.
, and
Steinke
,
M. E.
,
2002
, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3771
3780
.10.1016/S0017-9310(02)00090-X
12.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. dissertation,
University of Los Angeles
,
CA
.
13.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
14.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
15.
Chu
,
K.-H.
,
Joung
,
S. J.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.10.1063/1.4801811
16.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.10.1016/j.nucengdes.2010.07.006
17.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2011
, “
The Effect of Micro/Nanoscale Structures on CHF Enhancement
,”
Nucl. Eng. Technol.
,
43
(
3
), pp.
205
216
.10.5516/NET.2011.43.3.205
18.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.10.1016/j.ijheatmasstransfer.2011.08.044
19.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.10.1063/1.4791682
20.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.10.1063/1.4941032
21.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2015.04.100
22.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
23.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051501
.10.1115/1.4035247
24.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett.
,
110
(
9
), p.
094107
.10.1063/1.4977557
25.
Raghupathi
,
P.
,
Joshi
,
I. M.
,
Jaikumar
,
A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2017
, “
Bubble Induced Flow Field Modulation for Pool Boiling Enhancement Over a Tubular Surface
,”
Appl. Phys. Lett.
,
110
(
25
), p.
251603
.10.1063/1.4987138
26.
Raghupathi
,
P.
, and
Kandlikar
,
S. G.
,
2016
, “
Bubble Growth and Departure Trajectory Under Asymmetric Temperature Conditions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
824
832
.10.1016/j.ijheatmasstransfer.2015.12.058
27.
Rahman
,
M. M.
,
Pollack
,
J.
, and
McCarthy
,
M.
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
,
5
(
1
), p.
13145
.10.1038/srep13145
28.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
127
138
.10.1016/j.ijheatmasstransfer.2006.06.037
29.
Kennedy
,
J. E.
,
Roach
,
G. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
S. M.
, and
Quershi
,
Z. H.
,
200
, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
118
125
.10.1115/1.521442
30.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1996
, “
On Pressure Drop Fluctuations During Boiling in Narrow Channels
,”
Second European Thermal Sciences and 14th UIT National Heat Transfer Conference
,
Edizioni ETS
, Jan. 1, pp.
1323
1329
.
31.
Kandlikar
,
S. G.
,
Steinke
,
M. E.
,
Tian
,
S.
, and
Campbell
,
L. A.
,
2001
, “
High-Speed Photographic Observation of Flow Boiling of Water in Parallel Minichannels
,”
ASME Paper No. NHTC01-11262
.10.1115/NHTC01-11262
32.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
33.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.10.1016/j.expthermflusci.2005.10.001
34.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
35.
Alam
,
T.
,
Khan
,
A. S.
,
Li
,
W.
,
Yang
,
F.
,
Tong
,
Y.
,
Khan
,
J.
, and
Li
,
C.
,
2016
, “
Transient Force Analysis and Bubble Dynamics During Flow Boiling in Silicon Nanowire Microchannels
,”
Int. J. Heat Mass Transfer
,
101
, pp.
937
947
.10.1016/j.ijheatmasstransfer.2016.05.043
36.
Xu
,
J.
,
Shen
,
S.
,
Gan
,
Y.
,
Li
,
Y.
,
Zhang
,
W.
, and
Su
,
Q.
,
2005
, “
Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms
,”
J. Micromech. Microeng.
,
15
(
6
), pp.
1344
1361
.10.1088/0960-1317/15/6/028
37.
Kandlikar
,
S. G.
,
2010
, “
Similarities and Differences Between Flow Boiling in Microchannels and Pool Boiling
,”
Heat Transfer Eng.
,
31
(
3
), pp.
159
167
.10.1080/01457630903304335
38.
Lee
,
J. H.
,
Liu
,
D. Y.
, and
Yao
,
S.-C.
,
2010
, “
Flow Instability of Evaporative Micro-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1740
1749
.10.1016/j.ijheatmasstransfer.2010.01.016
39.
He
,
H.
,
Li
,
P.-F.
,
Yan
,
R.-G.
, and
Pan
,
L.-M.
,
2016
, “
Modeling of Reversal Flow and Pressure Fluctuation in Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1024
1033
.10.1016/j.ijheatmasstransfer.2016.06.102
40.
Wang
,
G.
,
Cheng
,
P.
, and
Wu
,
H.
,
2007
, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4297
4310
.10.1016/j.ijheatmasstransfer.2007.01.033
41.
He
,
H.
,
Pan
,
L.-M.
,
Wei
,
L.
,
Zhang
,
M.-H.
, and
Zhang
,
D.-F.
,
2020
, “
On the Importance of Non-Equilibrium Effect in Microchannel Two-Phase Boiling Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119185
.10.1016/j.ijheatmasstransfer.2019.119185
42.
Pan
,
L.-M.
,
Yan
,
R.-G.
,
Huang
,
H.-J.
,
He
,
H.
, and
Li
,
P. F.
,
2018
, “
Experimental Study on the Flow Boiling Pressure Drop Characteristics in Parallel Multiple Microchannels
,”
Int. J. Heat Mass Transfer
,
116
, pp.
642
654
.10.1016/j.ijheatmasstransfer.2017.09.033
43.
Chávez
,
C. A.
,
Moraga
,
N. O.
, and
Ribatski
,
G.
,
2019
, “
Thermal Oscillations During Flow Boiling of Hydrocarbon Refrigerants in a Microchannels Array Heat Sink
,”
Appl. Therm. Eng.
,
157
, p.
113725
.10.1016/j.applthermaleng.2019.113725
44.
Zhu
,
B.
,
Xu
,
J.
,
Yan
,
C.
, and
Xie
,
J.
,
2020
, “
A General Supercritical Heat Transfer Correlation for Vertical Up-Flow Tubes: K Number Correlation
,”
Int. J. Heat Mass Transfer
,
148
, p.
119080
.10.1016/j.ijheatmasstransfer.2019.119080
45.
Zhu
,
B.
,
Xu
,
J.
,
Wu
,
X.
,
Xie
,
J.
, and
Mingjia
,
L.
,
2019
, “
Supercritical “Boiling” Number, a New Parameter to Distinguish Two Regimes of Carbon Dioxide Heat Transfer in Tubes
,”
Int. J. Heat Mass Transfer
,
136
, pp.
254
266
.10.1016/j.ijthermalsci.2018.10.032
46.
Xu
,
J.
,
Zhang
,
H.
,
Zhu
,
B.
, and
Xie
,
J.
,
2020
, “
Critical Supercritical-Boiling-Number to Determine the Onset of Heat Transfer Deterioration for Supercritical Fluids
,”
Sol. Energy
,
195
, pp.
27
36
.10.1016/j.solener.2019.11.036
47.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.10.1016/j.ijthermalsci.2009.12.016
48.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T. J.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
.10.1115/1.4033497
49.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Chen
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (II): Reduced Pressure Drop and Enhanced Critical Heat
,”
Int. J. Heat Mass Transfer
,
68
, pp.
716
724
.10.1016/j.ijheatmasstransfer.2013.09.060
50.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Combining Liquid Inertia With Pressure Recovery From Bubble Expansion Enhanced Flow Boiling
,”
Appl. Phys. Lett.
,
107
(
18
), p.
181601
.10.1063/1.4935211
51.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.10.1115/1.4023574
52.
Kandlikar
,
S. G.
,
2016
, “
Mechanistic Considerations for Enhancing Flow Boiling Heat Transfer in Microchannels
,”
ASME J. Heat Transfer
,
138
(
2
), p.
021504
.10.1115/1.4031648
53.
Moreira
,
D. C.
,
Ribatski
,
G.
, and
Kandlikar
,
S. G.
,
2020
, “
Review of Enhancement Techniques With Vapor Extraction During Flow Boiling in Microchannels
,”
ASME Paper No. ICNMM2020-1068
.10.1115/ICNMM2020-1068
You do not currently have access to this content.