Abstract

In this study, a three-dimensional numerical investigation on the thermohydrodynamic performance of a recently proposed recharging microchannel (RMC) is carried out. In this design, a straight microchannel is split into more than one smaller length channels (having individual inlet and outlet) placed end to end. This design enhances overall heat transfer and maintains temperature uniformity across the substrate length. The comparison of fluid flow and heat transfer performance of RMC, interrupted microchannel (IMC) and straight microchannel (SMC) with the same hydraulic diameter and substrate length are presented to explore the effect of geometrical configuration on heat transfer enhancement. The parametric variations include the number of channels (n), transverse wall length (Ltw), channel aspect ratio (α), and flow Reynolds number. The results reveal that recharging microchannel shows better thermal performance compared to simple and interrupted microchannel with a maximum performance factor of 1.80. The results also indicate that the performance factor of RMC increases with an increase in the number of small channels, transverse wall length, and channel aspect ratio. The outcome of this study indicates the possible use of recharging microchannel heat sinks for high heat flux removal applications such as electronic cooling.

References

References
1.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
, Oxford, UK.
4.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Review of Single-Phase Heat Transfer Enhancement Techniques for Application in Microchannels, Minichannels and Microdevices
,”
Int. J. Heat Tech
.
,
22
(
2
), pp.
3
11
.10.18280/ijht220201
5.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
, and
Kamaruzaman
,
N.
,
2017
, “
Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design
,”
Int. J. Heat Mass Transfer
,
107
, pp.
21
44
.10.1016/j.ijheatmasstransfer.2016.11.031
6.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
.10.1016/j.ijheatmasstransfer.2004.12.008
7.
Xu
,
J.
,
Song
,
Y.
,
Zhang
,
W.
,
Zhang
,
H.
, and
Gan
,
Y.
,
2008
, “
Numerical Simulations of Interrupted and Conventional Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5906
5917
.10.1016/j.ijheatmasstransfer.2008.05.003
8.
Chai
,
L.
, and
Wang
,
L.
,
2018
, “
Thermal-Hydraulic Performance of Interrupted Microchannel Heat Sinks With Different Rib Geometries in Transverse Microchambers
,”
Int. J. Therm. Sci.
,
127
, pp.
201
212
.10.1016/j.ijthermalsci.2018.01.029
9.
Chai
,
L.
,
Xia
,
G.
,
Wang
,
L.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2013
, “
Heat Transfer Enhancement in Microchannel Heat Sinks With Periodic Expansion–Constriction Cross-Sections
,”
Int. J. Heat Mass Transfer
,
62
, pp.
741
751
.10.1016/j.ijheatmasstransfer.2013.03.045
10.
Yong
,
J. Q.
, and
Teo
,
C. J.
,
2014
, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages
,”
ASME J. Heat Transfer
,
136
, p.
041704
.10.1115/1.4026090
11.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
App. Therm. Eng.
,
78
, pp.
576
583
.10.1016/j.applthermaleng.2014.12.006
12.
Wang
,
R.
,
Wang
,
J.
,
Lijin
,
B.
, and
Zhu
,
Z.
,
2018
, “
Parameterization Investigation on the Microchannel Heat Sink With Slant Rectangular Ribs by Numerical Simulation
,”
App. Therm. Eng.
,
133
, pp.
428
438
.10.1016/j.applthermaleng.2018.01.021
13.
Xie
,
Y.
,
Shen
,
Z.
,
Zhang
,
D.
, and
Lan
,
J.
,
2014
, “
Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021001
.10.1115/1.4025757
14.
Ahmed
,
H. E.
, and
Ahmed
,
M. I.
,
2015
, “
Optimum Thermal Design of Triangular, Trapezoidal and Rectangular Grooved Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
47
57
.10.1016/j.icheatmasstransfer.2015.05.009
15.
Ma
,
D. D.
,
Xia
,
G. D.
,
Li
,
Y. F.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Design Study of Micro Heat Sink Configurations With Offset Zigzag Channel for Specific Chips Geometrics
,”
Energy Convers. Manage.
,
127
, pp.
160
169
.10.1016/j.enconman.2016.09.013
16.
Li
,
Y. F.
,
Xia
,
G. D.
,
Ma
,
D. D.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Triangular Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
98
, pp.
17
28
.10.1016/j.ijheatmasstransfer.2016.03.022
17.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1969
1981
.10.1016/j.ijheatmasstransfer.2017.01.046
18.
Chai
,
L.
,
Wang
,
L.
, and
Bai
,
X.
,
2018
, “
Thermohydraulic Performance of Microchannel Heat Sinks With Triangular Ribs on Sidewalls–Part 1: Local Fluid Flow and Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1124
1137
.10.1016/j.ijheatmasstransfer.2018.08.114
19.
Chai
,
L.
,
Wang
,
L.
, and
Bai
,
X.
,
2019
, “
Thermohydraulic Performance of Microchannel Heat Sinks With Triangular Ribs on Sidewalls–Part 2: Average Fluid Flow and Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
128
, pp.
634
648
.10.1016/j.ijheatmasstransfer.2018.09.027
20.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2019
, “
Thermo-Hydraulic Performance Evaluation of a Novel Design Recharging Microchannel
,”
Int. J. Therm. Sci.
,
135
, pp.
459
470
.10.1016/j.ijthermalsci.2018.09.006
21.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
22.
Guo
,
J.
,
Xu
,
M.
, and
Cheng
,
L.
,
2011
, “
Second Law Analysis of Curved Rectangular Channels
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
760
768
.10.1016/j.ijthermalsci.2010.12.011
23.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Advances in Thermal Modeling of Electronic Components and Systems
, Vol.
2
,
A.
Bar-Cohen
and
A.
Kraus
, eds.,
American Society of Mechanical Engineers
, New York.
24.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
You do not currently have access to this content.