Abstract

Pillar microchannel heat sinks have been widely used for chip cooling, while their overall heat transfer performance is restricted by the stagnation flow in pillar wake zone. In this work, a simple but effective method using slit microstructure modified on pillar was proposed to enhance wake zone heat transfer. It enables a special flow path for the incoming fluid that intensively disturbs the wake fluid. To validate the proposed method, a three-dimensional simulation was employed to study the laminar flow and heat transfer characteristics in the slit pillar microchannel. The pillar without slit design was also investigated for comparative analysis. Effects of slit angle (θ), height over diameter ratio (H/D), and blocking ratio (D/W) of a single pillar were systematically studied at the Reynolds numbers of 26–260. Results showed the case with θ = 0 deg always demonstrated lower surface temperature, higher Nusselt number and higher thermal performance index (TPI) compared to other cases with different slit angles at the same conditions. Furthermore, it was interesting to find that the slit configuration was not suitable for long pillar microchannel, but preferred for high blocking ratio pillar microchannel at present ranges (H/D 1, D/W 0.5). The slit pillar array microchannel was also explored and observed with improved overall heat transfer performance. The proposed slit microstructure well prevents the heat transfer deterioration in pillar wake zone, which is promisingly to be used for cooling performance improvement of electronic device.

References

1.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2017.10.015
2.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.10.1115/1.4024354
3.
Recinella
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Enhanced Flow Boiling Using Radial Open Microchannels With Manifold and Offset Strip Fins
,”
ASME J. Heat Transfer
,
140
(
2
), p.
021502
.10.1115/1.4037644
4.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
, and
Kamaruzaman
,
N.
,
2017
, “
Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design
,”
Int. J. Heat Mass Transfer
,
107
, pp.
21
44
.10.1016/j.ijheatmasstransfer.2016.11.031
5.
Chai
,
L.
,
Xia
,
G.
,
Wang
,
L.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2013
, “
Heat Transfer Enhancement in Microchannel Heat Sinks With Periodic Expansion–Constriction Cross-Sections
,”
Int. J. Heat Mass Transfer
,
62
, pp.
741
751
.10.1016/j.ijheatmasstransfer.2013.03.045
6.
Wang
,
Y.
,
Shin
,
J. H.
,
Woodcock
,
C.
,
Yu
,
X.
, and
Peles
,
Y.
,
2018
, “
Experimental and Numerical Study About Local Heat Transfer in a Microchannel With a Pin Fin
,”
Int. J. Heat Mass Transfer
,
121
, pp.
534
546
.10.1016/j.ijheatmasstransfer.2018.01.034
7.
Mohammadi
,
A.
, and
Kosar
,
A.
,
2017
, “
Hydrodynamic and Thermal Performance of Microchannels With Different Staggered Arrangements of Cylindrical Micro Pin Fins
,”
ASME J. Heat Transfer
,
139
(
6
), p.
062402
.10.1115/1.4035655
8.
Koz
,
M.
,
Ozdemir
,
M. R.
, and
Koşar
,
A.
,
2011
, “
Parametric Study on the Effect of End Walls on Heat Transfer and Fluid Flow Across a Micro Pin-Fin
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1073
1084
.10.1016/j.ijthermalsci.2010.12.008
9.
Wang
,
Y.
, and
Peles
,
Y.
,
2013
, “
An Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031901
.10.1115/1.4025558
10.
Xu
,
F.
, and
Wu
,
H.
,
2018
, “
Experimental Study of Water Flow and Heat Transfer in Silicon Micro-Pin-Fin Heat Sinks
,”
ASME J. Heat Transfer
,
140
(
12
), p.
122401
.10.1115/1.4040956
11.
Huisseune
,
H.
,
T'Joen
,
C.
,
Jaeger
,
P. D.
,
Ameel
,
B.
,
Schampheleire
,
S. D.
, and
Paepe
,
M. D.
,
2013
, “
Performance Enhancement of a Louvered Fin Heat Exchanger by Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
475
487
.10.1016/j.ijheatmasstransfer.2012.09.004
12.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2006
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1156
1167
.10.1115/1.2740308
13.
Chimres
,
N.
,
Wang
,
C. C.
, and
Wongwises
,
S.
,
2018
, “
Effect of Elliptical Winglet on the Air-Side Performance of Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
123
, pp.
583
599
.10.1016/j.ijheatmasstransfer.2018.02.079
14.
Md Salleh
,
M. F.
,
Gholami
,
A.
, and
Wahid
,
M. A.
,
2018
, “
Numerical Evaluation of Thermal Hydraulic Performance in Fin-and-Tube Heat Exchangers With Various Vortex Generator Geometries Arranged in Common-Flow-Down or Common-Flow-Up
,”
ASME J. Heat Transfer
,
141
(
2
), p.
021801
.10.1115/1.4041832
15.
Serson
,
D.
,
Meneghini
,
J. R.
,
Carmo
,
B. S.
,
Volpe
,
E. V.
, and
Gioria
,
R. S.
,
2014
, “
Wake Transition in the Flow Around a Circular Cylinder With a Splitter Plate
,”
J. Fluid Mech.
,
755
, pp.
582
602
.10.1017/jfm.2014.430
16.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Slotted Circular Cylinder at Various Angles of Attack
,”
Exp. Fluids
,
58
(
10
), p
132
.10.1007/s00348-017-2417-8
17.
Peng
,
B. H.
,
Miau
,
J. J.
,
Bao
,
F.
,
Weng
,
L. D.
,
Chao
,
C. C.
, and
Hsu
,
C. C.
,
2012
, “
Performance of Vortex Shedding From a Circular Cylinder With a Slit Normal to the Stream
,”
Flow Meas. Instrum.
,
25
, pp.
54
62
.10.1016/j.flowmeasinst.2011.07.003
18.
Shi
,
X. D.
, and
Feng
,
L. H.
,
2015
, “
Control of Flow Around a Circular Cylinder by Bleed Near the separation points
,”
Exp. Fluids
,
56
(
12
), p.
214
.10.1007/s00348-015-2083-7
19.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Circular Cylinder With Slit
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
287
301
.10.1016/j.expthermflusci.2016.11.025
20.
Ordia
,
L.
,
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2017
, “
Vortex Shedding Characteristics of a Cylinder With a Parallel Slit Placed in a Circular Pipe
,”
J. Vis.
,
20
(
2
), pp.
263
275
.10.1007/s12650-016-0398-y
21.
Bao
,
Z.
,
Qin
,
G.
,
He
,
W.
, and
Wang
,
Y.
,
2018
, “
Numerical Investigation of Flow Around a Slotted Circular Cylinder at Low Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
183
, pp.
273
282
.10.1016/j.jweia.2018.11.010
22.
Wang
,
J.
, and
Wang
,
C.
,
2016
, “
Heat Transfer and Flow Characteristics of a Rectangular Channel With a Small Circular Cylinder Having Slit-Vent Vortex Generator
,”
Int. J. Therm. Sci.
,
104
, pp.
158
171
.10.1016/j.ijthermalsci.2016.01.006
23.
Elcock
,
D.
,
Jung
,
J.
,
Kuo
,
C. J.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Interaction of a Liquid Flow Around a Micropillar With a Gas Jet
,”
Phys. Fluids
,
23
(
12
), p.
122001
.10.1063/1.3662436
24.
Elcock
,
D.
,
Honkanen
,
M.
,
Kuo
,
C.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Bubble Dynamics and Interactions With a Pair of Micro Pillars in Tandem
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
440
452
.10.1016/j.ijmultiphaseflow.2010.12.004
25.
Houshmand
,
F.
,
Elcock
,
D.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2014
, “
Bubble Formation From a Micro-Pillar in a Microchannel
,”
Int. J. Multiphase Flow
,
59
, pp.
44
53
.10.1016/j.ijmultiphaseflow.2013.10.011
26.
Nayebzadeh
,
A.
,
Wang
,
Y.
,
Tabkhi
,
H.
,
Shin
,
J.-H.
, and
Peles
,
Y.
,
2018
, “
Cavitation Behind a Circular Micro Pillar
,”
Int. J. Multiphase Flow
,
98
, pp.
67
78
.10.1016/j.ijmultiphaseflow.2017.08.012
27.
Mohammadi
,
A.
, and
Kosar
,
A.
,
2016
, “
Hydrodynamic and Thermal Performance of Microchannels With Different In-Line Arrangements of Cylindrical Micropin Fins
,”
ASME J. Heat Transfer
,
138
(
12
), pp.
122403
122418
.10.1115/1.4034164
28.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
TCPT-2006-096.R2: Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.10.1109/TCAPT.2007.906334
29.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
28
(
2
), pp.
121
131
.10.1115/1.2137760
30.
Rasouli
,
E.
,
Naderi
,
C.
, and
Narayanan
,
V.
,
2018
, “
Pitch and Aspect Ratio Effects on Single-Phase Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
118
, pp.
416
428
.10.1016/j.ijheatmasstransfer.2017.10.105
31.
Hajmohammadi
,
M. R.
,
Alipour
,
P.
, and
Parsa
,
H.
,
2018
, “
Microfluidic Effects on the Heat Transfer Enhancement and Optimal Design of Microchannels Heat Sinks
,”
Int. J. Heat Mass Transfer
,
126
, pp.
808
815
.10.1016/j.ijheatmasstransfer.2018.06.037
32.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular Cavities-A Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.10.1016/j.ijheatmasstransfer.2017.01.011
You do not currently have access to this content.