Abstract

In any parameter estimation problem, it is desirable to obtain more information in one single experiment. However, it is difficult to achieve multiple objectives in one single experiment. The work presented in this paper is the simultaneous estimation of heat transfer coefficient parameters, latent heat, and modeling error during the solidification of Al–4.5 wt %Cu alloy with the aid of Bayesian framework as an objective function that harmoniously matches the mathematical model and measurements. A 1D transient solidification problem is considered to be the mathematical model/forward model and numerically solved to obtain temperature distribution for the known boundary and initial conditions. Genetic algorithm (GA) and particle swarm optimization (PSO) are used as an inverse approach and the estimation of unknown parameters is accomplished for both pure and noisy temperature data. The use of Bayesian framework for the estimation of unknown parameters not only provides the information about the uncertainties associated with the estimates but also there is an inherent regularization term in which the inverse problem boils down to well-posed problem thereby plethora of information is extracted with less number of measurements. Finally, the results of this work open up new prospects for the solidification problem so as to obtain a feasible solution with the present approach.

References

1.
Stefanescu
,
D. M.
,
2015
,
Science and Engineering of Casting Solidification
,
Springer
, Cham, Switzerland.
2.
Santos
,
C. A.
,
Siqueira
,
C. A.
,
Garcia
,
A.
,
Quaresma
,
J. M.
, and
Spim
,
J. A.
,
2004
, “
Metal–Mold Heat Transfer Coefficients During Horizontal and Vertical Unsteady-State Solidification of al–cu and sn–pb Alloys
,”
Inverse Probl. Sci. Eng.
,
12
(
3
), pp.
279
296
.10.1080/10682760310001598706
3.
Bertelli
,
F.
,
Cheung
,
N.
, and
Garcia
,
A.
,
2013
, “
Inward Solidification of Cylinders: Reversal in the Growth Rate and Microstructure Evolution
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
577
582
.10.1016/j.applthermaleng.2013.08.034
4.
Trovant
,
M.
, and
Argyropoulos
,
S. A.
,
1998
, “
The Implementation of a Mathematical Model to Characterize Mold Metal Interface Effects in Metal Casting
,”
Can. Metall. Q.
,
37
(
3–4
), pp.
185
196
.10.1179/cmq.1998.37.3-4.185
5.
Cheung
,
N.
,
Ferreira
,
I. L.
,
Pariona
,
M. M.
,
Quaresma
,
J. M.
, and
Garcia
,
A.
,
2009
, “
Melt Characteristics and Solidification Growth Direction With Respect to Gravity Affecting the Interfacial Heat Transfer Coefficient of Chill Castings
,”
Mater. Des.
,
30
(
9
), pp.
3592
3601
.10.1016/j.matdes.2009.02.025
6.
Griffiths
,
W.
,
2000
, “
A Model of the Interfacial Heat-Transfer Coefficient During Unidirectional Solidification of an Aluminum Alloy
,”
Metall. Mater. Trans. B
,
31
(
2
), pp.
285
295
.10.1007/s11663-000-0047-6
7.
Zhang
,
X.
,
Fang
,
L.
,
Hu
,
H.
, and
Nie
,
X.
,
2017
, “
Determination of Metal/Die Interfacial Heat Transfer Coefficients in Squeeze Casting of Wrought Aluminum Alloy 7075 With Variations in Section Thicknesses and Applied Pressures
,”
ASME J. Heat Transfer
,
139
(
2
), p.
022101
.10.1115/1.4034855
8.
Santos
,
C. A.
,
Quaresma
,
J.
, and
Garcia
,
A.
,
2001
, “
Determination of Transient Interfacial Heat Transfer Coefficients in Chill Mold Castings
,”
J. Alloys Compd.
,
319
(
1–2
), pp.
174
186
.10.1016/S0925-8388(01)00904-5
9.
Woodbury
,
K.
, and
Gupta
,
A.
,
2008
, “
A Simple 1d Sensor Model to Account for Deterministic Thermocouple Errors (Bias) in the Solution of the Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
21
37
.10.1080/17415970701198241
10.
Woolley
,
J. W.
,
Pohanka
,
M.
, and
Woodbury
,
K. A.
,
2006
, “
From Experimentation to Analysis: Considerations for Determination of the Metal/Mold Interfacial Heat Transfer Coefficient Via Solution of the Inverse Heat Conduction Problem
,”
ASME
Paper No. IMECE2006-15710.10.1115/IMECE2006-15710
11.
Woolley
,
J. W.
, and
Woodbury
,
K. A.
,
2008
, “
Accounting for Sensor Errors in Estimation of Surface Heat Flux by an Inverse Method
,”
ASME
Paper No. HT2008-56301.10.1115/HT2008-56301.
12.
Ho
,
K.
, and
Pehlke
,
R. D.
,
1985
, “
Metal-Mold Interfacial Heat Transfer
,”
Metall. Trans. B
,
16
(
3
), pp.
585
594
.10.1007/BF02654857
13.
Nishida
,
Y.
,
Droste
,
W.
, and
Engler
,
S.
,
1986
, “
The Air-Gap Formation Process at the Casting-Mold Interface and the Heat Transfer Mechanism Through the Gap
,”
Metall. Trans. B
,
17
(
4
), pp.
833
844
.10.1007/BF02657147
14.
Davey
,
K.
,
1993
, “
An Analytical Solution for the Unidirectional Solidification Problem
,”
Appl. Math. Model.
,
17
(
12
), pp.
658
663
.10.1016/0307-904X(93)90076-S
15.
Ruddle
,
R. W.
,
1957
, “
The Solidification of Castings
,” No. 7. Inst. of Metals.
16.
Beck
,
J. V.
,
1970
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
703
716
.10.1016/0017-9310(70)90044-X
17.
Loulou
,
T.
,
Artyukhin
,
E.
, and
Bardon
,
J.
,
1999
, “
Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process—I: Experiment Principle and Modelisation
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2119
2127
.10.1016/S0017-9310(98)00333-0
18.
Hajjari
,
E.
,
Divandari
,
M.
,
Razavi
,
S.
,
Emami
,
S.
, and
Kamado
,
S.
,
2011
, “
Estimation of the Transient Interfacial Heat Flux Between Substrate/Melt at the Initiation of Magnesium Solidification on Aluminum Substrates Using the Lumped Capacitance Method
,”
Appl. Surf. Sci.
,
257
(
11
), pp.
5077
5082
.10.1016/j.apsusc.2011.01.024
19.
Sun
,
H.-C.
, and
Chao
,
L.-S.
,
2007
, “
Analysis of Interfacial Heat Transfer Coefficient of Green Sand Mold Casting for Aluminum and Tin-Lead Alloys by Using a Lump Capacitance Method
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
595
600
.10.1115/1.2709975
20.
Arunkumar
,
S.
,
Rao
,
K. S.
, and
Kumar
,
T. P.
,
2008
, “
Spatial Variation of Heat Flux at the Metal–Mold Interface Due to Mold Filling Effects in Gravity Die-Casting
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2676
2685
.10.1016/j.ijheatmasstransfer.2007.10.020
21.
Ranjbar
,
A.
,
Ezzati
,
M.
, and
Famouri
,
M.
,
2009
, “
Optimization of Experimental Design for an Inverse Estimation of the Metal-Mold Heat Transfer Coefficient in the Solidification of sn–10% pb
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5611
5617
.10.1016/j.jmatprotec.2009.05.019
22.
Garcia
,
S.
,
1999
, “
Experimental Design Optimization and Thermophysical Parameter Estimation of Composite Materials Using Genetic Algorithms
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
23.
Vishweshwara
,
P. S.
,
Gnanasekaran
,
N.
, and
Arun
,
M.
,
2019
, “
Estimation of Interfacial Heat Transfer Coefficient for Horizontal Directional Solidification of sn-5 wt% pb Alloy Using Genetic Algorithm as Inverse Method
,”
Soft Computing for Problem Solving
,
Springer
, Singapore, pp.
447
459
.
24.
Vishweshwara
,
P. S.
,
Gnanasekaran
,
N.
, and
Arun
,
M.
,
2019
, “
Inverse Estimation of Interfacial Heat Transfer Coefficient During the Solidification of sn-5 wt% pb Alloy Using Evolutionary Algorithm
,”
Advances in Materials and Metallurgy
,
Springer
, Singapore, pp.
227
237
.
25.
Wood
,
R.
,
1993
, “
A Comparison Between the Genetic Algorithm and the Function Specification Methods for an Inverse Thermal Field Problem
,”
Eng. Comput.
,
10
(
5
), pp.
447
457
.10.1108/eb023919
26.
Vakili
,
S.
, and
Gadala
,
M.
,
2009
, “
Effectiveness and Efficiency of Particle Swarm Optimization Technique in Inverse Heat Conduction Analysis
,”
Numer. Heat Transfer, Part B: Fundam.
,
56
(
2
), pp.
119
141
.10.1080/10407790903116469
27.
Vakili
,
S.
, and
Gadala
,
M.
,
2011
, “
A Modified Sequential Particle Swarm Optimization Algorithm With Future Time Data for Solving Transient Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part A: Appl.
,
59
(
12
), pp.
911
933
.10.1080/10407782.2011.582421
28.
Lee
,
K. H.
, and
Kim
,
K. W.
,
2015
, “
Performance Comparison of Particle Swarm Optimization and Genetic Algorithm for Inverse Surface Radiation Problem
,”
Int. J. Heat Mass Transfer
,
88
, pp.
330
337
.10.1016/j.ijheatmasstransfer.2015.04.075
29.
Dousti
,
P.
,
Ranjbar
,
A.
,
Famouri
,
M.
, and
Ghaderi
,
A.
,
2012
, “
An Inverse Problem in Estimation of Interfacial Heat Transfer Coefficient During Two-Dimensional Solidification of al 5% wt-si Based on Pso
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
4
), pp.
473
490
.10.1108/09615531211215765
30.
Wang
,
G.
,
Wan
,
S.
,
Chen
,
H.
,
Wang
,
K.
, and
Lv
,
C.
,
2018
, “
Fuzzy Identification of the Time-and Space-Dependent Internal Surface Heat Flux of Slab Continuous Casting Mold
,”
ASME J. Heat Transfer
,
140
(
12
), p.
122301
.10.1115/1.4040955
31.
Wang
,
X.
,
Li
,
H.
, and
Li
,
Z.
,
2018
, “
Estimation of Interfacial Heat Transfer Coefficient in Inverse Heat Conduction Problems Based on Artificial Fish Swarm Algorithm
,”
Heat Mass Transfer
, 54(10), pp.
3151
3162
.10.1007/s00231-018-2365-8
32.
Udayraj, Mulani
,
K.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2015
, “
Performance Analysis and Feasibility Study of Ant Colony Optimization, Particle Swarm Optimization and Cuckoo Search Algorithms for Inverse Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
89
, pp.
359
378
.10.1016/j.ijheatmasstransfer.2015.05.015
33.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3927
3941
.10.1016/j.ijheatmasstransfer.2004.02.028
34.
Raj
,
R. R.
,
Venugopal
,
G.
, and
Rajkumar
,
M.
,
2015
, “
Bayesian Inference for Parameter Estimation in Transient Heat Transfer Experiments
,”
ASME J. Heat Transfer
,
137
(
12
), p.
121011
.10.1115/1.4030955
35.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
3060
3068
.10.1016/j.ijheatmasstransfer.2011.01.028
36.
Orlande
,
H. R.
,
Dulikravich
,
G. S.
,
Neumayer
,
M.
,
Watzenig
,
D.
, and
Colaço
,
M. J.
,
2014
, “
Accelerated Bayesian Inference for the Estimation of Spatially Varying Heat Flux in a Heat Conduction Problem
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
1
), pp.
1
25
.10.1080/10407782.2013.812008
37.
Prabhu
,
K. N.
, and
Griffiths
,
W.
,
2001
, “
Metal/Mould Interfacial Heat Transfer During Solidification of Cast Iron in Sand Moulds
,”
Int. J. Cast Met. Res.
,
14
(
3
), pp.
147
155
.10.1080/13640461.2001.11819433
38.
Kulkarni
,
S.
, and
Radhakrishna
,
K.
,
2005
, “
Evaluation of Metal–Mould Interfacial Heat Transfer During the Solidification of Aluminium–4.5% Copper Alloy Castings Cast in Co2–Sand Moulds
,”
Mater. Sci.-Poland
,
23
(
3
), pp.
821
838
. http://www.materialsscience.pwr.wroc.pl/bi/vol23no3/articles/ms_2005_009.pdf
39.
Voller
,
V. R.
, and
Swaminathan
,
C.
,
1991
, “
General Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer, Part B Fundamentals
,
19
(
2
), pp.
175
189
.10.1080/10407799108944962
40.
Majchrzak
,
E.
,
Mochnacki
,
B.
, and
Suchy
,
J. S.
,
2008
, “
Identification of Substitute Thermal Capacity of Solidifying Alloy
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
257
268
.http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v46n2p257
41.
Goldberg
,
D. E.
, and
Holland
,
J. H.
,
1988
, “
Genetic Algorithms and Machine Learning
,”
Mach. Learn.
,
3
(
2/3
), pp.
95
99
.10.1023/A:1022602019183
42.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Sixth International Symposium on Micro Machine and Human Science, (MHS)
, Nagoya, Japan, Oct. 4–6, pp.
39
43
.
43.
Mota
,
C. A.
,
Orlande
,
H. R.
,
De Carvalho
,
M. O. M.
,
Kolehmainen
,
V.
, and
Kaipio
,
J. P.
,
2010
, “
Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux
,”
Heat Transfer Eng.
,
31
(
7
), pp.
570
580
.10.1080/01457630903425635
44.
Orlande
,
H.
, and
Ozisik
,
M.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
, Taylor and Francis, New York.
45.
Rojczyk
,
M.
,
Orlande
,
H. R.
,
Colaço
,
M. J.
,
Szczygieł
,
I.
,
Nowak
,
A. J.
,
Białecki
,
R. A.
, and
Ostrowski
,
Z.
,
2017
, “
Inverse Heat Transfer Problems: An Application to Bioheat Transfer
,”
Comput. Assisted Methods Eng. Sci.
,
22
(
4
), pp.
365
383
.https://cames.ippt.pan.pl/index.php/cames/article/view/20
46.
Silva
,
J. N.
,
Moutinho
,
D. J.
,
Moreira
,
A. L.
,
Ferreira
,
I. L.
, and
Rocha
,
O. L.
,
2011
, “
Determination of Heat Transfer Coefficients at Metal–Mold Interface During Horizontal Unsteady-State Directional Solidification of sn–pb Alloys
,”
Mater. Chem. Phys.
,
130
(
1–2
), pp.
179
185
.10.1016/j.matchemphys.2011.06.032
47.
Słota
,
D.
,
2008
, “
Solving the Inverse Stefan Design Problem Using Genetic Algorithms
,”
Inverse Probl. Sci. Eng.
,
16
(
7
), pp.
829
846
.10.1080/17415970801925170
48.
Chipperfield
,
A.
, and
Fleming
,
P.
,
1995
, “
The Matlab Genetic Algorithm Toolbox
,” IET Digital Library, London.
You do not currently have access to this content.