Abstract

In this paper, the influence of chemical reaction and heat source/sink on an unsteady magnetohydrodynamics (MHD) nanofluid flow that squeezed between two radiating parallel plates embedded in porous media is investigated analytically. We consider water as base fluid and aluminum oxide (Al2O3) as its nanoparticle. We reduced the basic partial differential equations to ordinary differential equations which are solved by the homotopy analysis method (HAM). The effects of the squeeze number, permeability parameter of porous media, Hartmann number, thermal radiation parameter, Prandtl number, heat source/sink parameter, Eckert number, Schmidt number, and scaled parameter of chemical reaction on the flow, heat, and mass transfer are considered and assigned to graphs. The physical quantities such as Sherwood number, Nusselt number, and skin friction coefficient are computed for Al2O3–water, TiO2–water, Ag–water, and Cu–water nanofluids and assigned through graphs.

References

References
1.
Stefan
,
M. J.
,
1874
, “
Versuch Über Die Scheinbare Adhesion
,”
Akademie Der Wissenschaften Wien. Mathematisch-Naturwissenschaftliche
,
69
(
12
), pp.
712
721
.10.1002/andp.18752300213
2.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Ashorynejad
,
H. R.
,
2013
, “
Investigation of Squeezing Unsteady Nanofluid Flow Using ADM
,”
Powder Technol.
,
239
, pp.
259
265
.10.1016/j.powtec.2013.02.006
3.
Azimi
,
M.
,
Azimi
,
A.
, and
Mirzaei
,
M.
,
2014
, “
Investigation of the Unsteady Graphene Oxide Nanofluid Flow Between Two Moving Plates
,”
J. Comput. Theor. Nano Sci.
,
11
(
10
), pp.
2104
2108
.10.1166/jctn.2014.3612
4.
Dib
,
A.
,
Haiahem
,
A.
, and
Bou Said
,
B.
,
2015
, “
Approximate Analytical Solution of Squeezing Unsteady Nanofluid Flow
,”
Powder Technol.
,
269
, pp.
193
199
.10.1016/j.powtec.2014.08.074
5.
Domairry
,
G.
, and
Hatami
,
M.
,
2014
, “
Squeezing Cu–Water Nanofluid Flow Analysis Between Parallel Plates by DTM-Padé Method
,”
J. Mol. Liq.
,
193
, pp.
37
44
.10.1016/j.molliq.2013.12.034
6.
Gupta
,
A. K.
, and
Saha Ray
,
S.
,
2015
, “
Numerical Treatment for Investigation of Squeezing Unsteady Nanofluid Flow Between Two Parallel Plates
,”
Powder Technol.
,
279
, pp.
282
289
.10.1016/j.powtec.2015.04.018
7.
Dogonchi
,
A. S.
,
Hatami
,
M.
, and
Domairry
,
G.
,
2015
, “
Motion Analysis of a Spherical Solid Particle in Plane Couette Newtonian Fluid Flow
,”
Powder Technol.
,
274
, pp.
186
192
.10.1016/j.powtec.2015.01.018
8.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates
,”
Powder Technol.
,
235
, pp.
873
879
.10.1016/j.powtec.2012.11.030
9.
Sheikholeslami
,
M.
,
Hatami
,
M.
, and
Domairry
,
G.
,
2015
, “
Numerical Simulation of Two Phase Unsteady Nanofluid Flow and Heat Transfer Between Parallel Plates in Presence of Time Dependent Magnetic Field
,”
J. Taiwan Inst. Chem. Eng.
,
46
, pp.
43
50
.10.1016/j.jtice.2014.09.025
10.
Hatami
,
M.
,
Sheikholeslami
,
M.
, and
Domairry
,
G.
,
2014
, “
High Accuracy Analysis for Motion of a Spherical Particle in Plane Couette Fluid Flow by Multi-Step Differential Transformation Method
,”
Powder Technol.
,
260
, pp.
59
67
.10.1016/j.powtec.2014.02.057
11.
Sheikholeslami
,
M.
,
Hatami
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Numerical Investigation of Nanofluid Spraying on an Inclined Rotating Disk for Cooling Process
,”
J. Mol. Liq.
,
211
, pp.
577
583
.10.1016/j.molliq.2015.07.006
12.
Mustafa
,
M.
,
Hayat
,
T.
, and
Obaidat
,
S.
,
2012
, “
On Heat and Mass Transfer in the Unsteady Squeezing Flow Between Parallel Plates
,”
Meccanica
,
47
(
7
), pp.
1581
1589
.10.1007/s11012-012-9536-3
13.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Unsteady Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Considering Thermal Radiation
,”
J. Braz. Soc. Mech. Sci. Eng.
37(3), pp.
895
902
.
14.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments Applications of Non-Newtonian Flows, Vol. 231/66, D. A. Siginer and H. P. Wang, eds., FED/MD, ASME, New York, pp.
99
105
.
15.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersed Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
16.
Buongiorno
,
J.
, and
Hu
,
W.
,
2005
, “
Nanofluid Coolants for Advanced Nuclear Power Plants
,” ICAPP'05, Seoul, May, 15–19, Paper No. 5705.
17.
Hatami
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Heat Transfer and Flow Analysis for SA Ti O 2 Non-Newtonian Nanofluid Passing Through the Porous Media Between Two Coaxial Cylinders
,”
J. Mol. Liq.
,
188
, pp.
155
161
.10.1016/j.molliq.2013.10.009
18.
Singh
,
P.
,
Pandey
,
A. K.
, and
Kumar
,
M.
,
2016
, “
Forced Convection in MHD Slip Flow of Alumina–Water Nanofluid Over a Flat Plate
,”
J. Enhanced Heat Transfer
,
23
(
6
), pp.
487
497
.10.1615/JEnhHeatTransf.2018025485
19.
Mohamed
,
R. A.
, and
Mubarak
,
M. S.
,
2014
, “
Radiating and Chemically Reacting MHD Nanofluid Flow Due to a Stretching Sheet in the Presence of Viscous Dissipation and Heat Generation/Absorption
,”
J. Nanofluids
,
3
(
3
), pp.
296
305
.10.1166/jon.2014.1096
20.
Mohamed
,
R. A.
,
Rida
,
S. Z.
, and
Mubarak
,
M. S.
,
2016
, “
MHD Nanofluid Flow Over an Exponentially Radiating Stretching Sheet Through a Porous Medium With Suction/Injection
,”
J. Nanofluids
,
5
(
2
), pp.
273
283
.10.1166/jon.2016.1215
21.
Pandey
,
A. K.
, and
Kumar
,
M.
,
2017
, “
Natural Convection and Thermal Radiation Influence on Nanofluid Flow Over a Stretching Cylinder in a Porous Medium With Viscous Dissipation
,”
Alexandria Eng. J.
,
56
(
1
), pp.
55
62
.10.1016/j.aej.2016.08.035
22.
Hady
,
F. M.
,
Ibrahim
,
F. S.
,
Abdel Gaied
,
S. M.
, and
Eid
,
M. R.
,
2012
, “
Radiation Effect on Viscous Flow of a Nanofluid and Heat Transfer Over a Nonlinearly Stretching Sheet
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
229
.10.1186/1556-276X-7-229
23.
Pandey
,
A. K.
, and
Kumar
,
M.
,
2018
, “
MHD Flow Inside a Stretching/Shrinking Convergent/Divergent Channel With Heat Generation/Absorption and Viscous-Ohmic Dissipation Utilizing Cu-Water Nanofluid
,”
Comput. Therm. Sci.
,
10
(
5
), pp.
457
471
.10.1615/ComputThermalScien.2018020807
24.
Pourmehran
,
O.
,
Rahimi-Gorji
,
M.
,
Hatami
,
M.
,
Sahebi
,
S. A. R.
, and
Domairry
,
G.
,
2015
, “
Numerical Optimization of Microchannel Heat Sink (MCHS) Performance Cooled by KKL Based Nanofluids in Saturated Porous Medium
,”
J. Taiwan Inst. Chem. Eng.
,
55
, pp.
49
68
.10.1016/j.jtice.2015.04.016
25.
Pandey
,
A. K.
, and
Kumar
,
M.
,
2016
, “
Effect of Viscous Dissipation and Suction/Injection on MHD Nanofluid Flow Over a Wedge With Porous Medium and Slip
,”
Alexandria Eng. J.
,
55
(
4
), pp.
3115
3123
.10.1016/j.aej.2016.08.018
26.
Khan
,
Z. H.
,
Khan
,
W. A.
, and
Pop
,
I.
,
2013
, “
Triple Diffusive Free Convection Along a Horizontal Plate in Porous Media Saturated by a Nanofluid With Convective Boundary Condition
,”
Int. J. Heat Mass Transfer
,
66
, pp.
603
612
.10.1016/j.ijheatmasstransfer.2013.07.074
27.
Upreti
,
H.
,
Pandey
,
A. K.
, and
Kumar
,
M.
,
2018
, “
MHD Flow of Ag-Water Nanofluid Over a Flat Porous Plate With Viscous-Ohmic Dissipation, Suction/Injection and Heat Generation/Absorption
,”
Alexandria Eng. J.
, 57(3), pp.
1839
1847
.10.1016/j.aej.2017.03.018
28.
Liao
,
S. J.
,
1992
, “
The Proposed Homotopy Analysis Technique for the Solution of Non-Linear Problems
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
29.
Liao
,
S. J.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
Boca Raton, FL
.
30.
Liao
,
S. J.
,
1997
, “
A Kind of Approximate Solution Technique Which Does Not Depend Upon Small Parameters (II): An Application in Fluid Mechanics
,”
Int. J. Non-Linear Mech.
,
32
(
5
), pp.
815
822
.10.1016/S0020-7462(96)00101-1
31.
Arafa, A. A. M., Rida, S. Z., and Mohamed, H., 2012, “Approximate Analytical Solutions of Schnakenberg Systems by Homotopy Analysis Method,”
Appl. Math. Model.
,
36
(10), pp. 4789–4796.10.1016/j.apm.2011.12.014
32.
Pandey
,
A. K.
, and
Kumar
,
M.
,
2018
, “
Squeezing Unsteady MHD Cu-Water Nanofluid Flow Between Two Parallel Plates in Porous Medium With Suction/Injection
,”
Comput. Appl. Math. J.
,
4
(
2
), pp.
31
42
.http://www.aascit.org/journal/archive2?journalId=928&paperId=6229
33.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.10.1063/1.1700493
34.
Garnett
,
J. C. M.
,
1904
, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc., A
,
203
(
359–371
), pp.
385
420
.10.1098/rsta.1904.0024
35.
Guérin
,
C. A.
,
Mallet
,
P.
, and
Sentenac
,
A.
,
2006
, “
Effective-Medium Theory for Finite-Size Aggregates
,”
J. Opt. Soc. Am. A
,
23
(
2
), pp.
349
358
.10.1364/JOSAA.23.000349
You do not currently have access to this content.