Abstract

Dissolution of steel scrap in molten iron is studied by using analytical as well as numerical approaches for the case of a heat transfer-controlled process. The approaches used are Green's function approach, quasi-static approach, integral profile method (IPM) (with parabolic profile), and finite difference methods (FDM). Application of FDM explicit and FDM implicit with fixed grid and variable grid is described. Accuracy of all the approaches is compared in terms of total dissolution time evaluated from overall heat balance criterion. The selection rule of time step and deciding the suitable approach for achieving minimum error for different operating conditions, represented by nondimensional Biot number, are described in this paper.

References

1.
Hu
,
H.
, and
Argyropoulos
,
S. A.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Modell. Simul. Mater. Sci. Eng.
,
4
(
4
), p.
371
.10.1088/0965-0393/4/4/004
2.
Basu
,
B.
, and
Date
,
A. W.
,
1988
, “
Numerical Modelling of Melting and Solidification Problems—A Review
,”
Sadhana
,
13
(
3
), pp.
169
213
.10.1007/BF02812200
3.
Bonacin
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1825
1832
.10.1016/0017-9310(73)90202-0
4.
Murray
,
W. D.
, and
Landis
,
F.
,
1959
, “
Numerical and Machine Solutions of Transient Heat Conduction Problems Involving Melting and Freezing
,”
Trans. ASME
,
245
, pp.
106
112
.
5.
Verma
,
A. K.
,
Chandra
,
S.
, and
Dhindaw
,
B. K.
,
2005
, “
A Fully Implicit Fixed-Grid Finite Difference Formulation for Phase Change Problems
,”
Trans. Indian Inst. Met.
,
58
(
6
), pp.
517
523
.
6.
Palmiere
,
W.
, and
Santos
,
R. G.
,
1998
,
Modeling of Casting, Welding and Advanced Solidification Processes VIII
,
A Publication of the Minerals, Metals & Materials Society
,
Warrendale, PA
, p.
1063
.
7.
Volkova
,
O.
,
Heller
,
H. P.
, and
Janke
,
D.
,
2003
, “
Mathematical Simulation of Process Parameters in the Case of Rapid Solidification of Steel
,”
Steel Res. Int.
,
74
(
11–12
), pp.
708
715
.10.1002/srin.200300254
8.
Reddy
,
G. S.
,
Mascarenhas
,
W. J.
, and
Reddy
,
J. N.
,
1993
, “
Numerical Simulation of Solidification of Molten Aluminum Alloys in Cylindrical Molds
,”
Metall. Trans.
,
24
(
4
), pp.
677
684
.10.1007/BF02673183
9.
Voller
,
V. R.
,
2009
, “
Analytical Models of Solidification Phenomena
,”
Trans. Indian Inst. Met.
,
62
(
4–5
), pp.
279
283
.10.1007/s12666-009-0042-9
10.
Chuang
,
Y. K.
, and
Szekely
,
J.
,
1971
, “
On the Use of Green's Function for Solving Melting or Solidification Problems
,”
Int. J. Heat Mass Transfer
,
14
(
9
), pp.
1285
1294
.10.1016/0017-9310(71)90178-5
11.
Chuang
,
Y. K.
, and
J. Szekely
,
J.
,
1972
, “
The Use of Green's Functions for Solving Melting or Solidification Problems in the Cylindrical Coordinate System
,”
Int. J. Heat Mass Transfer
,
15
(
5
), pp.
1171
1174
.10.1016/0017-9310(72)90247-5
12.
Ehrich
,
O.
,
Chuang
,
Y. K.
, and
Schwerdtfeger
,
K.
,
1978
, “
The Melting of Metal Spheres Involving the Initially Frozen Shells With Different Material Properties
,”
Int. J. Heat Mass Transfer
,
21
(
3
), pp.
341
349
.10.1016/0017-9310(78)90127-8
13.
Sha
,
H.
, and
Schwerdtfeger
,
K.
,
1998
, “
Computation of the Solidification of Pure Metals in Plate Geometry Using the Green's Function Method
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3265
3278
.10.1016/S0017-9310(98)00032-5
14.
Seaton
,
C. E.
,
Rodriguez
,
A. A.
,
González
,
M.
, and
Manrique
,
M.
,
1983
, “
The Rate of Dissolution of Pre-Reduced Iron in Molten Steel
,”
Trans. ISIJ
,
23
(
1
), pp.
14
20
.10.2355/isijinternational1966.23.14
15.
Stephen
,
K.
,
1969
, “
Influence of Heat Transfer on Melting and Solidification in Forced Flow
,”
Int. J. Heat Mass Transfer
,
12
(
2
), pp.
199
214
.10.1016/0017-9310(69)90062-3
16.
Kern
,
J.
,
1977
, “
A Simple and Apparently Safe Solution to the Generalised Stefan Problem
,”
Int. J. Heat Mass Transfer
,
20
(
5
), pp.
467
474
.10.1016/0017-9310(77)90093-X
17.
Hamill
,
T. D.
, and
Bankoff
,
S. G.
,
1963
, “
Maximum and Minimum Bounds on Freezing‐Melting Rates With Time‐Dependent Boundary Conditions
,”
AIChE. J.
,
9
(
6
), pp.
741
744
.10.1002/aic.690090607
18.
Boley
,
B. A.
,
1968
, “
A General Starting Solution for Melting and Solidifying Slabs
,”
Int. J. Eng. Sci.
,
6
(
2
), pp.
89
111
.10.1016/0020-7225(68)90022-0
19.
Patel
,
P. D.
, and
Boley
,
B. A.
,
1969
, “
Solidification Problems With Space and Time Varying Boundary Conditions and Imperfect Mold
,”
Int. J. Eng. Sci.
,
7
(
10
), pp.
1041
1066
.10.1016/0020-7225(69)90004-4
20.
Lederman
,
J. M.
, and
Boley
,
B. A.
,
1970
, “
Axisymmetric Melting or Solidification of Circular Cylinders
,”
Int. J. Heat Mass Trans.
,
13
(
2
), pp.
413
427
.10.1016/0017-9310(70)90116-X
21.
Wu
,
Y. K.
, and
Lacroix
,
M.
,
1995
, “
Numerical Simulation of the Melting of Scrap Metal in a Circular Furnace
,”
Int. Commun. Heat Mass Transfer
,
22
(
4
), pp.
517
525
.10.1016/0735-1933(95)00037-Y
22.
Kroeger
,
P. G.
, and
Ostrach
,
S.
,
1974
, “
The Solution of a Two-Dimensional Freezing Problem Including Convection Effects in the Liquid Region
,”
Int. J. Heat Mass Transfer
,
17
(
10
), pp.
1191
1207
.10.1016/0017-9310(74)90120-3
23.
Sugawar
,
M.
, and
Irvine
,
T. F.
,
2000
, “
The Effect of Concentration Gradient on the Melting of a Horizontal Ice Plate From Above
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1591
1601
.10.1016/S0017-9310(99)00230-6
24.
Sparrow
,
E. M.
,
Patankar
,
S. V.
, and
Ramadhyani
,
S.
,
1977
, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
520
526
.10.1115/1.3450736
25.
Li
,
J.
,
Brooks
,
G.
, and
Provatas
,
N.
,
2005
, “
Kinetics of Scrap Melting in Liquid Steel
,”
Metall. Mater. Trans. B
,
36
(
2
), pp.
293
302
.10.1007/s11663-005-0031-2
26.
Li
,
J.
, and
N. Provatas
,
N.
,
2008
, “
Kinetics of Scrap Melting in Liquid Steel: Multipiece Scrap Melting
,”
Metall. Mater. Trans. B
,
39
(
2
), pp.
268
279
.10.1007/s11663-007-9102-x
27.
Gaye
,
H.
,
Wanin
,
M.
,
Gugliermina
,
P.
, and
Schittly
,
P.
,
2000
, “
Kinetics of Scrap Dissolution in the Converter. Theoretical Model and Plant Experimentation
,”
68th Steelmaking Conference, AIME
,
Detroit, MI
, Apr. 14–17, pp.
91
103
.
28.
Shukla
,
A. K.
,
Deo
,
B.
, and
Robertson
,
D. G. C.
,
2013
, “
Scrap Dissolution in Molten Iron Containing Carbon for the Case of Coupled Heat and Mass Transfer Control
,”
Metall. Mater. Trans. B
,
44
(
6
), pp.
1407
1427
.10.1007/s11663-013-9905-x
29.
Greenberg
,
M. D.
,
2000
,
Application of Green's Functions in Science and Engineering
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.