Abstract

This paper experimentally investigates the effect of rotation on heat transfer in a typical turbine blade, three-pass, serpentine coolant channel with discrete ribbed walls at high Reynolds numbers. To achieve the high Reynolds number (Re → 190,000) and low rotation number conditions, pressurized Freon R-134a vapor is utilized as the working fluid. Cooling flow in the first passage is radial outward; after the 180 deg tip turn, the flow is radial inward through the second passage; and after the 180 deg hub turn, the flow is radial outward in the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers as low as 0.07 and Reynolds numbers from 85,000 to 187,000 (based on the first passage geometry and flow conditions). Heat transfer coefficients were measured using thermocouples embedded in copper plates to provide regionally averaged heat transfer coefficients. Heat transfer enhancement due to rotation is observed on the first passage, pressure-side with radially outward flow and the second passage, suction-side with radially inward flow, but a reduction in heat transfer is observed on the third passage pressure-side with radially outward flow. In addition, results from the discrete, broken ribs are compared with those from the same serpentine coolant passage with conventional, angled ribbed walls. A significant increase in the heat transfer due to the discrete ribs is observed in the first passage. These results can be useful for understanding real rotor blade coolant passage heat transfer under high Reynolds number and low rotation number conditions.

References

1.
U.S.
Energy
Information Administration,
2019
, “
Total Energy Data Browser
,” U.S. Energy Information Administration, Washington, DC, accessed May 28, www.eia.gov/totalenergy/data/browser/
2.
EIA,
2019
, “Annual Energy Outlook 2019 with Projections to
2050
,” U.S. Energy Information Administration (EIA), Office of Energy Analysis, U.S. Department of Energy, Washington, DC.
3.
Davis
,
S. C.
, and
Boundy
,
R. G.
,
2019
,
Transportation Energy Data Book: Edition 37.1
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
4.
Han
,
J. C.
,
Sandip
,
D.
, and
Srinath
,
E.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
.
5.
NETL
,
2006
,
The Gas Turbine Handbook
,
U.S. Department of Energy—National Energy Technology Laboratory (NETL)
,
Morgantown, WV
.
6.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205. 10.1115/GT2017-63205
7.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
8.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.10.1115/1.4039644
9.
Wright
,
L. M.
, and
Han
,
J. C.
,
2014
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,”
J. Enhanced Heat Transfer
,
21
(
2–3
), pp.
111
140
.10.1615/JEnhHeatTransf.2015012169
10.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components for Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, p.
275653
.10.1155/2013/275653
11.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passage With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.10.1115/1.2927736
12.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Passage With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.10.1115/1.2927879
13.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passage With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.10.1115/1.2929467
14.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
578
584
.10.1115/1.2822671
15.
Park
,
C. W.
, and
Lau
,
S. C.
,
1998
, “
Effect of Channel Orientation of Local Heat (Mass) Distributions in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
624
632
.10.1115/1.2824323
16.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1999
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME J. Turbomach.
,
121
(
4
), pp.
651
662
.10.1115/1.2836717
17.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
251
259
.10.1115/1.1450569
18.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Angled Ribs
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
617
625
.10.1115/1.1471525
19.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.10.1115/1.1860564
20.
Acharya
,
S.
,
Agarwal
,
P.
, and
Nikitopoulos
,
D. E.
,
2004
, “
Heat/Mass Transfer in a 4:1 AR Smooth and Ribbed Coolant Passage With Rotation in 90-Degreee and 45-Degree Orientations
,”
ASME
Paper No. GT2004-53928. 10.1115/GT2004-53928
21.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
,
2004
, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,”
ASME
Paper No. GT2004-53501. 10.1115/GT2004-53501
22.
Willett
,
F. T.
, and
Bergles
,
A. E.
,
2001
, “
Heat Transfer in Rotating Narrow Rectangular Ducts With Heated Sides Orientated at 60° to the R-Z Plane
,”
ASME J. Turbomach.
,
123
(
2
), pp.
288
295
.10.1115/1.1354189
23.
Cho
,
H. H.
,
Kim
,
Y. Y.
,
Kim
,
K. M.
, and
Rhee
,
D. H.
,
2003
, “
Effects of Rib Arrangements and Rotation Speed on Heat Transfer in a Two-Pass Duct
,”
ASME
Paper No. 2003-GT-38609. 10.1115/2003-GT-38609
24.
Agarwal
,
P.
,
Acharya
,
S.
, and
Nikitopoulos
,
D. E.
,
2003
, “
Heat/Mass Transfer in 1:4 Rectangular Passages With Rotation
,”
ASME
Paper No 2003-GT-38615.10.1115/GT2003-38615
25.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With Smooth Walls
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
265
277
.10.1115/1.1857946
26.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45-Degree Ribbed Walls
,”
ASME
Paper No. GT 2005-68493. 10.1115/2005-68493
27.
Harasgama
,
S. P.
, and
Morris
,
W. D.
,
1988
, “
The Influence of Rotation on the Heat Transfer Characteristic of Circular, Triangular, and Square-Sectioned Coolant Passages of Gas Turbine Rotor Blades
,”
ASME J. Turbomach.
,
110
(
1
), pp.
44
50
.10.1115/1.3262166
28.
Dutta
,
S.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1996
, “
Local Heat Transfer in a Rotating Two-Pass Ribbed Triangular Duct With Two Model Orientations
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
707
715
.10.1016/0017-9310(95)00171-9
29.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1995
, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
281
289
.10.1115/1.2835657
30.
Hwang
,
J. J.
, and
Lu
,
C. C.
,
2001
, “
Lateral-Flow Effect on Endwall Heat Transfer and Pressure Drop in a Pin Fin Trapezoidal Duct With Various Pin Shapes
,”
ASME J. Turbomach.
,
123
(
1
), pp.
133
139
.10.1115/1.1333093
31.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071701
.10.1115/1.2907437
32.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge Shaped Cooling Channels With Slot Ejection Under High Rotation Numbers
,”
ASME
Paper No. GT2008-50343. 10.1115/GT2008-50343
33.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091901
.10.1115/1.4006298
34.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.10.1115/1.4000549
35.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.10.1115/1.4003172
36.
Huh
,
M.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Rib Height on Heat Transfer in a Two Pass Rectangular Channel (AR = 1:4) With a Sharp Entrance at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4635
4649
.10.1016/j.ijheatmasstransfer.2009.03.021
37.
Huh
,
M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2009
, “
Rib Spacing Effect on Heat Transfer in Rectangular Channel at High Rotation Numbers
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
294
304
.10.2514/1.37512
38.
Liu
,
Y. H.
,
Huh
,
M.
,
Rhee
,
D. H.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2009
, “
Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers
,”
ASME J. Turbomach.
,
131
(
4
), p.
041017
.10.1115/1.3072493
39.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2010
, “
High Rotation Number Effect on Heat Transfer in a Triangular Channel With 45°, Inverted 45°, and 90° Ribs
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071702
.10.1115/1.4000986
40.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer in Trailing-Edge Channels With Slot Ejection Under High Rotation Numbers
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
305
315
.10.2514/1.37982
41.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.10.1115/1.4003746
42.
Rallabandi
,
A. P.
,
Lei
,
J.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade-Shape Serpentine Coolant Passages With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.10.1115/1.4026945
43.
Yang
,
S. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2015
, “
Heat Transfer in Rotating Serpentine Coolant Passage With Ribbed Walls at Low Mach Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011013
.10.1115/1.4028905
44.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.