In this paper is described the development and the experimental study of a flat plate pulsating heat pipe (FPPHP) built by means of metal additive manufacturing (AM). In the recent years, small/medium aerospace companies have gained interest in the development of small satellites. The small dimensions, coupled with the need for high-power devices for science and communications, increase the interest in thermally functional structures. The space business is characterized by a very small production lot, and custom designs from project to project. The AM exactly fits these needs and, in the past years, the use of this technology in aerospace projects has grown significantly. This paper, after a brief review of the pulsating heat pipe (PHP), focuses on the development and testing of a panel with an embedded closed-loop FPPHP built by means of metal AM technique. The article presents a trade-off analysis between the metal AM technologies available on the market; by means of the trade-off analysis, a design strategy is proposed by the authors. A comparison between available FPPHP results in literature and the three-dimensional (3D) printed structure will show the differences between the common subtractive technology and the innovative AM technique.

References

References
1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No.
4,921,041, A
.https://patents.google.com/patent/US4921041A/en
2.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,” U.S. Patent No.
5,219,020, A
.https://patents.google.com/patent/US5219020A/en
3.
Gu
,
J.
,
Kawaji
,
M.
, and
Futamata
,
R.
,
2004
, “
Effects of Gravity on the Performance of Pulsating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
370
378
.
4.
Gu
,
J.
,
Kawaji
,
M.
, and
Futamata
,
R.
,
2005
, “
Microgravity Performance of Micro Pulsating Heat Pipe
,”
Microg. Sci. Technol.
,
16
(
1–4
), pp.
181
185
.
5.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
.
6.
Ayel
,
V.
,
Araneo
,
L.
,
Scalambra
,
A.
,
Mameli
,
M.
,
Romestant
,
C.
,
Piteau
,
A.
,
Marengo
,
M.
,
Filippeschi
,
S.
, and
Bertin
,
Y.
,
2015
, “
Experimental Study of a Closed Loop Flat Plate Pulsating Heat Pipe Under a Varying Gravity Force
,”
Int. J. Therm. Sci.
,
96
, pp.
23
34
.
7.
Creatini
,
F.
,
Guidi
,
G. M.
,
Belfi
,
F.
,
Cicero
,
G.
,
Fioriti
,
D.
,
Di Prizio
,
D.
,
Piacquadio
,
S.
,
Becatti
,
G.
,
Orlandini
,
G.
,
Frigerio
,
A.
,
Fontanesi
,
S.
,
Nannipieri
,
P.
,
Rognini
,
M.
,
Morganti
,
N.
,
Filippeschi
,
S.
,
Di Marco
,
P.
,
Fanucci
,
L.
,
Baronti
,
F.
,
Mameli
,
M.
,
Manzoni
,
M.
, and
Marengo
,
M.
,
2015
, “
Pulsating Heat Pipe Only for Space (PHOS): Results of the REXUS 18 Sounding Rocket Campaign
,”
J. Phys.: Conf. Ser.
,
655
, p.
012042
.
8.
Ibrahim
,
O. T.
,
Monroe
,
J. G.
,
Thompson
,
S. M.
,
Shamsaei
,
N.
,
Bilheux
,
H.
,
Elwany
,
A.
, and
Bian
,
L.
,
2017
, “
An Investigation of a Multi-Layered Oscillating Heat Pipe Additively Manufactured From Ti-6Al-4V Powder
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1036
1047
.
9.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.
10.
Mameli
,
M.
,
Araneo
,
L.
,
Filippeschi
,
S.
,
Marelli
,
L.
,
Testa
,
R.
, and
Marengo
,
M.
,
2014
, “
Thermal Response of a Closed Loop Pulsating Heat Pipe Under a Variable Gravity Force
,”
Int. J. Therm. Sci.
,
80
, pp.
11
22
.
11.
Qu
,
J.
,
Wang
,
Q.
, and
Sun
,
Q.
, “
Lower Limit of Internal Diameter for Oscillating Heat Pipes: A Theoretical Model
,”
Int. J. Therm. Sci.
,
110
, pp. 174–185.
You do not currently have access to this content.