This paper presents a planar cooling strategy for rotating radar systems using heat pipe technology. The proposed design uses six 1 m long heat pipes in parallel oriented in an evaporator-down modus at an elevation angle of 85 deg. An analytical model based on conventional heat pipe limits is used to predict the performance taking into account both gravitational and centrifugal forces. The heat pipe array is mounted on a rotating platform of which both the mounting angle w.r.t. the rotational arm and rotational speed can be varied. The radial distance w.r.t. the rotational axis was set at 0.5 m. The setup was tested in an environmental chamber to simulate higher ambient temperatures as well. Moreover, measurements were conducted by varying the heat sink airflow rates. The performance was determined by the temperature gradient across the planar structure. Successful heat pipe operation and experimental performances were determined for a number of application parameters. At higher rotational speeds, the influence of centrifugal forces that may assist or hinder the working fluid circulation became discernible. For higher rotational frequencies, the mounting angle proved to be of (minor) influence on the performance in agreement with the developed model. The current design was validated for effective planar cooling of a rotating radar system for planar heat loads up to 1000 W. Temperature gradients across the planar structure remain below critical limits and overall thermal resistances from planar to ambient air conditions of 0.040 K/W and below were observed.

References

References
1.
Chu
,
J.
,
2017
, “
RF Front-End Technologies–30 Years of Applied Research and Development
,”
IEEE Microwave Mag.
,
18
(
2
), pp.
96
102
.
2.
Agrawal
,
A. K.
,
Kopp
,
B. A.
,
Luesse
,
M. H.
, and
O Haver
,
K. W.
,
2001
, “
Active Phased Array Antenna Development for Modern Shipboard Radar Systems
,”
Johns Hopkins APL Tech. Dig.
,
22
(
4
), pp.
600
613
.https://www.jhuapl.edu/techdigest/TD/td2204/Agrawal.pdf
3.
Hannemann
,
R.
,
Marsala
,
J.
, and
Pitasi
,
M.
,
2004
, “
Pumped Liquid Multiphase Cooling
,”
ASME
Paper No. IMECE2004-60669.
4.
Upadhya
,
G.
,
Pullins
,
C.
,
Freitag
,
K.
,
Hall
,
G.
, and
Marthinuss
,
J.
,
2017
, “
State of the Art of Electronics Cooling for Radar Antenna Applications
,”
ASME
Paper No. IPACK2017-74080.
5.
Faghri
,
A.
,
2014
, “
Heat Pipes: Review, Opportunities and Challenges
,”
Front. Heat Pipes
,
5
(
1
), pp. 1–48.https://www.scribd.com/document/323642833/HEAT-PIPES-Review-Opportunities-and-Challenges
6.
Schreiber
,
M.
,
Wits
,
W. W.
, and
te Riele
,
G. J.
,
2016
, “
Numerical and Experimental Investigation of a Counter-Current Two-Phase Thermosyphon With Cascading Pools
,”
Appl. Therm. Eng.
,
99
, pp.
133
146
.
7.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p. 021001.
8.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.
9.
Wits
,
W. W.
, and
te Riele
,
G. J.
,
2017
, “
Modelling and Performance of Heat Pipes With Long Evaporator Sections
,”
Heat Mass Transfer
,
53
(
11
), pp.
3341
3351
.
10.
Chan
,
S. H.
,
Kanai
,
Z.
, and
Yang
,
W. T.
,
1971
, “
Theory of a Rotating Heat Pipe
,”
J. Nucl. Energy
,
25
(
10
), pp.
479
487
.
11.
Daniels
,
T. C.
, and
Al-Jumaily
,
F. K.
,
1975
, “
Investigations of the Factors Affecting the Performance of a Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
961
973
.
12.
Niekawa
,
J.
,
Matsumoto
,
K.
,
Koizumi
,
T.
,
Hasegawa
,
K.
,
Kaneko
,
H.
, and
Mizoguchi
,
Y
,
1982
, “
Performance of Revolving Heat Pipes and Application to a Rotary Heat Exchanger
,”
D. A.
Reay
, ed.,
Advances in Heat Pipe Technology
,
Pergamon
, London, pp.
225
234
.
13.
Klasing
,
K. S.
,
Thomas
,
S. K.
, and
Yerkes
,
K. L.
,
1999
, “
Prediction of the Operating Limits of Revolving Helically Grooved Heat Pipes
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
213
216
.
14.
Faghri
,
A.
,
Gogineni
,
S.
, and
Thomas
,
S.
,
1993
, “
Vapor Flow Analysis of an Axially Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2293
2303
.
15.
Lin
,
L.
, and
Faghri
,
A.
,
1999
, “
Heat Transfer in Micro Region of a Rotating Miniature Heat Pipe
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1363
1369
.
16.
Ling
,
J.
,
Cao
,
Y.
, and
Lopez
,
A. P.
,
2001
, “
Experimental Investigations of Radially Rotating Miniature High-Temperature Heat Pipes
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
113
119
.
17.
Yau
,
Y. H.
, and
Foo
,
Y. C.
,
2011
, “
Comparative Study on Evaporator Heat Transfer Characteristics of Revolving Heat Pipes Filled With R134a, R22 and R410A
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
202
211
.
18.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice: A Sourcebook
(Series in Thermal and Fluids Engineering),
Hemisphere Publication
,
Washington, DC
.
19.
Tien
,
C. L.
, and
Chung
,
K. S.
,
1979
, “
Entrainment Limits in Heat Pipes
,”
AIAA J.
,
17
(
6
), pp.
643
646
.
20.
Cao
,
Y.
, and
Faghri
,
A.
, 1994, “
Micro/Miniature Heat Pipes and Operating Limitations
,”
J. Enhanced Heat Transfer
,
1
(3), pp. 265–274.
21.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
, New York.
22.
Dunn
,
P. D.
, and
Reay
,
D.
,
2012
,
Heat Pipes
,
Elsevier
, Oxford, UK.
23.
Reay
,
D. A.
,
McGlen
,
R.
, and
Kew
,
P. A.
, 2014,
Heat Pipes: Theory, Design and Applications
, 6th ed., Elsevier, Oxford, UK.
24.
Wits
,
W. W.
, and
Kok
,
J. B. W.
,
2011
, “
Modeling and Validating the Transient Behavior of Flat Miniature Heat Pipes Manufactured in Multilayer Printed Circuit Board Technology
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081401
.
25.
Wits
,
W. W.
, and
Vaneker
,
T. H. J.
,
2010
, “
Integrated Design and Manufacturing of Flat Miniature Heat Pipes Using Printed Circuit Board Technology
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
398
408
.
You do not currently have access to this content.