The numerical simulation was carried out to investigate mechanism of the heat transfer enhancement in the fin-and-tube heat exchangers. As known, the vortex generators (VGs) were widely used to improve the thermal performance with bad flow resistance characteristics and led to bad comprehensive performance. This paper aims to expound the mechanism of thermal hydraulic characteristics and explore the effect of VGs position on the comprehensive performance. Three types of fins (type 1, type 2, and type 3) were discussed in this paper. The j factor, f factor, and performance evaluation (PEC) of three types of VGs in different positions were discussed and compared. Based on the numerical results, a detailed description of the effect of three types of VGs on the heat transfer performance and flow resistance characteristics was presented at different Reynolds number in the range between 1300 and 2000. In addition, local velocity distribution, local temperature distribution, and local pressure drop distribution were analyzed and discussed. And the effect of VG angle on the thermal performance and flow resistance was presented. It can be concluded that the main heat transfer occurred in the region before the tube, and the wake region behind the tube was harmful to improve the thermal performance and reduce the flow resistance. Besides, VG in the wake region was obviously beneficial to the enhancement of the thermal performance with less energy loss.

References

References
1.
Kaminski
,
S.
, and
Groß
,
U.
,
2000
, “
Air-Side Heat Transfer and Pressure Drop in Finned Tube Heat Exchangers (Luftseitiger Wärmeübergang Und Druckverlust in Lamellenrohr-Wärmeübertragern)
,”
KI Luft Kältetechnik
,
36
(
1
), pp.
13
18
.
2.
Lu
,
C. W.
,
Huang
,
J. M.
,
Nien
,
W. C.
, and
Wang
,
C. C.
,
2011
, “
A Numerical Investigation of the Geometric Effects on the Performance of Plate Finned-Tube Heat Exchanger
,”
Energy Convers. Manage.
,
52
(
3
), pp.
1638
1643
.
3.
Liu
,
Y. C.
,
Wongwises
,
S.
,
Chang
,
W. J.
, and
Wang
,
C. C.
,
2010
, “
Airside Performance of Fin-and-Tube Heat Exchangers in Dehumidifying Conditions: Data With Larger Diameter
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1603
1608
.
4.
Karmo
,
D.
,
Ajib
,
S.
, and
Al Khateeb
,
A.
,
2013
, “
New Method for Designing an Effective Finned Heat Exchanger
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
539
550
.
5.
Sahin
,
H. M.
,
Dal
,
A. R.
, and
Baysal
,
E.
,
2007
, “
3-D Numerical Study on the Correlation Between Variable Inclined Fin Angles and Thermal Behavior in Plate Fin-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
27
, pp.
1806
1816
.
6.
Bhuiyan
,
A. A.
,
Amin
,
M. R.
, and
Islam
,
A. S.
,
2013
, “
Three-Dimensional Performance Analysis of Plain Fin Tube Heat Exchangers in Transitional Regime
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
445
454
.
7.
Wang
,
C. C.
,
Chang
,
Y. J.
,
Hsieh
,
Y. C.
, and
Lin
,
Y. T.
,
1996
, “
Sensible Heat and Friction Characteristics of Plate Fin-and-Tube Heat Exchangers Having Plane Fins
,”
Int. J. Refrig.
,
19
(
4
), pp.
223
230
.
8.
Cobian-Iñiguez
,
J.
,
Wu
,
A.
,
Dugast
,
F.
, and
Pacheco-Vega
,
A.
,
2015
, “
Numerically-Based Parametric Analysis of Plain Fin and Tube Compact Heat Exchangers
,”
Appl. Therm. Eng.
,
86
, pp.
1
13
.
9.
Lin
,
Z.-M.
,
Wang
,
L.-B.
, and
Zhang
,
Y.-H.
,
2014
, “
Numerical Study on Heat Transfer Enhancement of Circular Tube Bank Fin Heat Exchanger With Interrupted Annular Groove Fin
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1465
1476
.
10.
Wang
,
C.-C.
,
Chen
,
K.-Y.
,
Liaw
,
J.-S.
, and
Tseng
,
C.-Y.
,
2015
, “
An Experimental Study of the Air-Side Performance of Fin-and-Tube Heat Exchangers Having Plain, Louver, and Semi-Dimple Vortex Generator Configuration
,”
Int. J. Heat Mass Transfer
,
80
, pp.
281
287
.
11.
Lotfi
,
B.
,
Zeng
,
M.
,
Sunden
,
B.
, and
Wang
,
Q.
,
2014
, “
3D Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth Wavy Fin-and-Elliptical Tube Heat Exchangers Using New Type Vortex Generators
,”
Energy
,
73
, pp.
233
257
.
12.
Simo Tala
,
J. V.
,
Bougeard
,
D.
,
Russeil
,
S.
, and
Harion
,
J. L.
,
2012
, “
Tube Pattern Effect on Thermal Hydraulic Characteristics in a Two-Rows Finned-Tube Heat Exchanger
,”
Int. J. Therm. Sci.
,
60
, pp.
225
235
.
13.
Gholami
,
A.
,
Wahid
,
M. A.
, and
Mohammed
,
H. A.
,
2017
, “
Thermal-Hydraulic Performance of Fin-and-Oval Tube Compact Heat Exchangers With Innovative Design of Corrugated Fin Patterns
,”
Int. J. Heat Mass Transfer
,
106
, pp.
573
592
.
14.
Tang
,
L. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
818
827
.
15.
Huisseune
,
H.
,
Joen
,
C. T.
,
De Jaeger
,
P.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2013
, “
Performance Enhancement of a Louvered Fin Heat Exchanger by Using Delta Vortex Generators
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
475
487
.
16.
Abdollahi
,
A.
, and
Shams
,
M.
,
2015
, “
Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
81
(
25
), pp.
376
387
.
17.
He
,
Y.-L.
,
Chu
,
P.
,
Tao
,
W.-Q.
,
Zhang
,
Y.-W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.
18.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zhang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5449
5458
.
19.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.
20.
Li
,
L.
,
Du
,
X.
,
Zhang
,
Y.
,
Yang
,
L.
, and
Yang
,
Y.
,
2015
, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
92
, pp.
85
96
.
21.
Delac
,
B.
,
Trp
,
A.
, and
Lenic
,
K.
,
2014
, “
Numerical Investigation of Heat Transfer Enhancement in a Fin and Tube Heat Exchanger Using Vortex Generators
,”
Int. J. Heat Mass Transfer
,
78
, pp.
662
669
.
22.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. L.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
23.
Gong
,
B.
,
Wang
,
L.-B.
, and
Lin
,
Z.-M.
,
2015
, “
Heat Transfer Characteristics of a Circular Tube Bank Fin Heat Exchanger With Fins Punched Curve Rectangular Vortex Generators in the Wake Regions of the Tubes
,”
Appl. Therm. Eng.
,
75
(
22
), pp.
224
238
.
24.
Zhan
,
Y.-H.
,
Wu
,
X.
,
Wang
,
L.-B.
,
Song
,
K.-W.
,
Dong
,
Y.-X.
, and
Liu
,
S.
,
2008
, “
Comparison of Heat Transfer Performance of Tube Bank Fin With Mounted Vortex Generators to Tube Bank Fin With Mounted Vortex Generators to Tube Bank Fin With Punched Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
58
66
.
25.
Wang
,
W.
,
Bao
,
Y.
, and
Wang
,
Y.
,
2015
, “
Numerical Investigation of a Finned-Tube Heat Exchanger With Novel Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
86
(
5
), pp.
27
34
.
26.
Yogesh
,
S. S.
,
Selvaraj
,
A. S.
,
Ravi
,
D. K.
, and
Rajagopal
,
T. K. R.
,
2018
, “
Heat Transfer and Pressure Drop Characteristics of Inclined Elliptical Fin Tube Heat Exchanger of Varying Ellipticity Ratio Using CFD Code
,”
Int. J. Heat Mass Transfer
,
119
, pp.
26
39
.
27.
Panse
,
S. P.
,
2005
, “
A Numerical Investigation of Thermal and Hydraulic Characteristics in 3D Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Transitional Flow Regimes
,” M.Sc. thesis, Montana State University, Bozeman, MT.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Reddy
,
G.
,
1994
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC Press
,
Boca Raton, FL
.
30.
Kim
,
M. S.
,
Lee, J.
,
Yook, S.-J.
, and
Lee, K. -S.
,
2011
, “
Correlations and Optimization of a Heat Exchanger With Offset-Strip Fins
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2073
2079
.
31.
ANSYS, 2009, “
ANSYS Fluent Version 6.3
,” Southpointe, Canonsburg, PA
Canonsburg, PA
.
32.
Ahsan
,
M.
,
2014
, “
Numerical Analysis of Friction Factor for a Fully Developed Turbulent Flow Using k-ε Turbulence Model With Enhanced Wall Treatment
,”
Beni-Suef Univ. J. Basic Appl. Sci.
,
3
(
4
), pp.
269
277
.
33.
Motozawa
,
M.
,
Ishitsuka
,
S.
,
Iwamoto
,
K.
,
Ando
,
H.
,
Senda
,
T.
, and
Kawaguchi
,
Y.
,
2012
, “
Experimental Investigation on Turbulent Structure of Drag Reducing Channel Flow With Blowing Polymer Solution From the Wall
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
121
41
.
34.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principle of Enhanced Heat Transfer
,
2nd ed.
,
CRC Press
,
New York
.
35.
Wen
,
J.
,
Yang
,
H.
,
Tong
,
X.
,
Li
,
K.
,
Wang
,
S.
, and
Li
,
Y.
,
2016
, “
Optimization Investigation on Configuration Parameters of Serrated Fin in Plate-Fin Heat Exchanger Using Genetic Algorithm
,”
Int. J. Therm. Sci.
,
101
, pp.
116
125
.
36.
Leu
,
J. S.
,
Liu
,
M. -S.
,
Liaw
,
J. -S.
, and
Wang
,
C. -C.
,
2001
, “
A Numerical Investigation of Louvered Fin-and-Tube Heat Exchangers Having Circular and Oval Tube Configurations
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4235
4243
.
37.
Čarija
,
Z.
,
Franković
,
B.
,
Perčić
,
M.
, and
Čavrak
,
M.
,
2014
, “
Heat Transfer Analysis of Fin-and-Tube Heat Exchangers With Flat and Louvered Fin Geometries
,”
Int. J. Refrig.
,
45
, pp.
160
167
.
You do not currently have access to this content.