Heat pipe characteristics are linked to the surface properties of the diabatic surfaces, and, in the evaporator, surface properties influence both the onset boiling temperature (TONB) and the critical heat flux (CHF). In this work, the effect of surface wettability in pool boiling heat transfer is studied in order to understand if there could be a path to increment heat pipe thermal performance. This work analyzes the effects of surface wettability on boiling (tested fluid is pure water) and proposes a new super-hydrophobic polymeric coating (De Coninck et al., 2017, “Omniphobic Surface Coatings,” Patent No. WO/2017/220591), which can have a very important effect in improving the heat pipe start-up power load and increasing the thermal performance of heat pipes when the flux is lower than the critical heat flux. The polymeric coating is able to reduce the TONB (−11% from 117 °C to about 104 °C) compared with the uncoated surfaces, as it inhibits the formation of a vapor film on the solid–liquid interface, avoiding CHF conditions up to maximum wall temperature (125 °C). This is realized by the creation of a heterogeneous surface with superhydrophobic surface (SHS) zones dispersed on top of a hydrophilic surface (stainless steel surface). The proposed coating has an outstanding thermal resistance: No degradation of SH properties of the coating has been observed after more than 500 thermal cycles.

References

References
1.
Teodori
,
E.
,
Valente
,
T.
,
Malavasi
,
I.
,
Moita
,
A. S.
,
Marengo
,
M.
, and
Moreira
,
A. L. N.
,
2017
, “
Effect of Extreme Wetting Scenarios on Pool Boiling Conditions
,”
Appl. Therm. Eng.
,
115
, pp.
1424
1437
.
2.
Malavasi
,
I.
,
Teodori
,
E.
,
Moita
,
A. S.
,
Moreira
,
A. L. N.
, and
Marengo
,
M.
,
2018
, “
Wettability Effect on Pool Boiling: A Review
,”
Encyclopedia of Two-Phase Heat Transfer and Flow III
, In: Thome, John R., ed., World Scientific Publishing Company, Singapore, pp.
1
61
.
3.
Miljkovic
,
N.
,
Preston
,
D. J.
, and
Wang
,
E. N.
,
2015
, “
Recent Developments in Altered Wettability for Enhancing Condensation
,”
Encyclopedia of Two-Phase Heat Transfer and Flow II
, World Scientific, Singapore, pp.
85
131
.
4.
Li
,
B.
, and
Zhang
,
J.
,
2016
, “
Durable and Self-Healing Superamphiphobic Coatings Repellent Even to Hot Liquids
,”
Chem. Commun.
,
52
(
13
), pp.
2744
2747
.
5.
Malavasi
,
I.
,
Bernagozzi
,
I.
,
Antonini
,
C.
, and
Marengo
,
M.
,
2015
, “
Assessing Durability of Superhydrophobic Surfaces
,”
Surf. Innov.
,
3
(
1
), pp. 49–60.
6.
Villa
,
F.
,
Marengo
,
M.
, and
De Coninck
,
J.
,
2018
, “
A New Model to Predict the Influence of Surface Temperature on Contact Angle
,”
Sci. Rep.
,
8
(
1
), p.
6549
.
7.
Blake
,
T. D.
,
Fernandez-Toledano
,
J.-C.
,
Doyen
,
G.
, and
De Coninck
,
J.
,
2015
, “
Forced Wetting and Hydrodynamic Assist
,”
Phys. Fluids
,
27
(
11
), p.
112101
.
8.
Diaz
,
M. E.
,
Savage
,
M. D.
, and
Cerro
,
R. L.
,
2017
, “
The Effect of Temperature on Contact Angles and Wetting Transitions for n-Alkanes on PTFE
,”
J. Colloid Interface Sci.
,
503
, pp.
159
167
.
9.
Erbil
,
H. Y.
,
McHale
,
G.
, and
Newton
,
M. I.
,
2002
, “
Drop Evaporation on Solid Surfaces:  Constant Contact Angle Mode
,”
Langmuir
,
18
(
7
), pp.
2636
2641
.
10.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
11.
Blake
,
T. D.
, and
De Coninck
,
J.
,
2011
, “
Dynamics of Wetting and Kramers' Theory
,”
Eur. Phys. J. Spec. Top.
,
197
(
1
), p.
249
.
12.
Wong
,
S.-C.
, and
Lin
,
Y.-C.
,
2011
, “
Effect of Copper Surface Wettability on the Evaporation Performance: Tests in a Flat-Plate Heat Pipe With Visualization
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3921
3926
.
13.
Hwang
,
G. S.
,
Nam
,
Y.
,
Fleming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2010
, “
Multi-Artery Heat Pipe Spreader: Experiment
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2662
2669
.
14.
Hu
,
Y.
,
Cheng
,
J.
,
Zhang
,
W.
,
Shirakashi
,
R.
, and
Wang
,
S.
,
2013
, “
Thermal Performance Enhancement of Grooved Heat Pipes With Inner Surface Treatment
,”
Int. J. Heat Mass Transfer
,
67
, pp.
416
419
.
15.
Betancur
,
L.
,
Mangini
,
D.
,
Facin
,
A.
,
Mantelli
,
M.
,
Paiva
,
K.
, and
Marengo
,
M.
,
2018
, “
Experimental Study of Start-Up in a Closed Loop Pulsating Heat Pipe With Alternating Superhydrophobic Channels
,”
Joint 19th International Heat Pipe Conference and 13th International Heat Pipe Symposium
,
Pisa, Italy
,
June 10–14
, pp.
6
7
.
16.
Ciloglu
,
D.
, and
Bolukbasi
,
A.
,
2015
, “
A Comprehensive Review on Pool Boiling of Nanofluids
,”
Appl. Therm. Eng.
,
84
, pp.
45
63
.
17.
Sureshkumar
,
R.
,
Mohideen
,
S. T.
, and
Nethaji
,
N.
,
2013
, “
Heat Transfer Characteristics of Nanofluids in Heat Pipes: A Review
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
397
410
.
18.
Fabio Villa
,
J. D. C.
,
Marco Marengo
,
A. G.
, and
Di Marco
,
P.
,
2016
, “
Pool Boiling Versus Surface Wettability Characteristics
,”
World Congress on Momentum, Heat and Mass Transfer
(
MHMT'16
),
Prague, Czech Republic
,
Apr. 4–5
, Paper No. ICMFHT 110.https://avestia.com/MHMT2016_Proceedings/files/paper/ICMFHT/110.pdf
19.
De Coninck
,
J.
,
Ocando Cordero
,
C.
, and
Villa
,
F.
,
2017
, “
Omniphobic Surface Coatings
,” Patent No.
WO2017220591A1
.https://patents.google.com/patent/WO2017220591A1/en
20.
De Coninck
,
J.
,
Dunlop
,
F.
, and
Huillet
,
T.
,
2013
, “
Is Superhydrophobicity Robust With respect to Disorder?
,”
Eur. Phys. J. E
,
36
(
9
), p.
104
.
21.
Attinger
,
D.
,
Frankiewicz, C.
,
Betz, A. R.
,
Schutzius, T. M.
,
Ganguly, R.
,
Das, A.
,
Kim, C.
, and
Megaridis, C. M.
,
2014
, “
Surface Engineering for Phase Change Heat Transfer: A Review
,” MRS Energy and Sustainability, Vol.
1
, pp.
1
85
.
22.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
You do not currently have access to this content.