In a conventional continuous annealing line, the energy supplied to steel strip during heating is not recovered while cooling it. Therefore, an alternative heat transfer technology for energy efficient continuous annealing of steel was developed. This technology enables reusing the heat extracted during cooling of the strip in the heating part of the process. This is achieved by thermally linking the cooling strip to the heating strip via multiple rotating heat pipes. In this context, the dynamic simulation of a full heat pipe assisted annealing line is performed. The dynamic simulation consists of the interaction of computational building blocks, each comprising of a rotating heat pipe and strip parts wrapped around the heat pipe. The simulations are run for different installation configurations and operational settings, with the heat pipe number varying between 50 and 100 and with varying strip line speed and dimensions. The heat pipes are sized to be 0.5 m in diameter and 3 m in length. The simulation results show that the equipment is capable of satisfying the thermal cycle requirements of annealing both at steady-state and during transition between steady-states following changes in boundary conditions. With this concept, energy savings of up to 70% are feasible.

References

References
1.
ASM International Handbook Committee,
1991
,
ASM Handbook
(Heat Treating, Vol.
4
),
American Society for Metals
,
Materials Park, OH
, pp.
42
55
.
2.
Paulussen
,
G.
,
2011
, “
Heat Pipe Assisted Strip Treatment
,” Patent No. WO 2011012257 A1.
3.
Gray
,
V. H.
,
1969
, “
The Rotating Heat Pipe—A Wickless Hollow Shaft for Transferring High Heat Fluxes
,” ASME Paper No. 69-HT-19.
4.
Zuo
,
Z. J.
, and
Faghri
,
A.
,
1998
, “
A Network Thermodynamic Analysis of the Heat Pipe
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1473
1484
.
5.
Ballback
,
L. J.
,
1969
, “
The Operation of a Rotating, Wickless Heat Pipe
,” Ph.D. thesis, Naval Postgraduate School, Monterey, CA.
6.
Jen
,
T. C.
,
Chen
,
Y. M.
, and
Gutierrez
,
G.
,
2003
, “
Thermal Performance of Heat Pipe Drill: Experimental Study
,”
ASME
Paper No. HT2003-47096.
7.
Jen
,
T. C.
,
Gutierrez
,
G.
,
Eapen
,
S.
,
Barber
,
G.
,
Zhao
,
H.
,
Szuba
,
P. S.
,
Labataille
,
J.
, and
Manjunathaiah
,
J.
,
2002
, “
Investigation of Heat Pipe Cooling in Drilling Applications—Part I: Preliminary Numerical Analysis and Verification
,”
Int. J. Mach. Tools Manuf.
,
42
(
5
), pp.
643
652
.
8.
Ponnappan
,
R.
,
He
,
Q.
, and
Leland
,
J.
,
1997
, “
Test Results of a High Speed Rotating Heat Pipe
,” 32nd
Thermophysics Conference
,
Atlanta, GA
,
June 23–25
, p.
2543
.
9.
Kukharskii
,
M. P.
,
1974
, “
Closed Evaporative Cooling of Rotating Electrical Machines
,”
J. Eng. Phys.
,
27
(
3
), pp.
1090
1096
.
10.
Groll
,
M.
,
Krahling
,
H.
, and
Munzel
,
W. D.
,
1978
, “
Heat Pipes for Cooling of an Electric Motor
,”
J. Energy
,
2
(
6
), pp.
363
367
.
11.
Celik
,
M.
,
Devendran
,
K.
,
Paulussen
,
G.
,
Pronk
,
P.
,
Frinking
,
F.
,
de Jong
,
W.
, and
Boersma
,
B. J.
,
2018
, “
Experimental and Numerical Investigation of Contact Heat Transfer Between a Rotating Heat Pipe and a Steel Strip
,”
Int. J. Heat Mass Transfer
,
122
, pp.
529
538
.
12.
Chandler
,
H.
,
1994
,
Heat Treater's Guide: Practices and Procedures for Irons and Steels
,
American Society for Metals
,
Materials Park, OH
, p.
8
.
13.
Union
,
C. E.
,
2005
, “
Eurocode 3: Design of Steel Structures—Part 1–2: General Rules – Structural Fire Design
,” The European Union Per Regulation, Brussels, Belgium, Report No.
EN 1993-1-2:2005: E
, pp.
22
23
.http://www.gaprojekt.com/sites/default/files/legislation/Eurocode%203%20-Design%20of%20steel%20structures%20-%20Part%201-2%20-%20en.1993.1.2.2005.pdf
14.
Celik
,
M.
,
Paulussen
,
G.
,
van Erp
,
D.
,
de Jong
,
W.
, and
Boersma
,
B. J.
,
2018
, “
Transient Modelling of Rotating and Stationary Cylindrical Heat Pipes: An Engineering Model
,”
Energies
,
11
(
12
), p.
3458
.
15.
Reay
,
D.
,
McGlen
,
R.
, and
Kew
,
P.
,
2013
,
Heat Pipes: Theory, Design and Applications
,
Butterworth-Heinemann
, Waltham, MA, pp.
20
22
.
16.
Bertossi
,
R.
,
Guilhem
,
N.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Bertin
,
Y.
,
2012
, “
Modeling of Heat and Mass Transfer in the Liquid Film of Rotating Heat Pipes
,”
Int. J. Therm. Sci.
,
52
, pp.
40
49
.
17.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2003
, “
Fluid Flow and Heat Transfer Model for High-Speed Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4393
4401
.
18.
Harley
,
C.
, and
Faghri
,
A.
,
1995
, “
Two-Dimensional Rotating Heat Pipe Analysis
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
202
208
.
19.
Ferrandi
,
C.
,
Iorizzo
,
F.
,
Mameli
,
M.
,
Zinna
,
S.
, and
Marengo
,
M.
,
2013
, “
Lumped Parameter Model of Sintered Heat Pipe: Transient Numerical Analysis and Validation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1280
1290
.
20.
Cao
,
Y.
, and
Faghri
,
A.
,
1991
, “
Transient Multidimensional Analysis of Nonconventional Heat Pipes With Uniform and Nonuniform Heat Distributions
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
995
1002
.
21.
Baker
,
J.
,
Oliver
,
T.
,
Lin
,
L.
,
Ponnapan
,
R.
, and
Leland
,
J.
,
2001
, “
Correlations of Critical Froude Number for Annular-Rimming Flow in Rotating Heat Pipes
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
909
913
.
22.
Lin
,
L.
, and
Faghri
,
A.
,
1997
, “
Heat Transfer Analysis of Stratified Flow in Rotating Heat Pipes With Cylindrical and Stepped Walls
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4393
4404
.
23.
Daniels
,
T. C.
, and
Al-Jumaily
,
F. K.
,
1975
, “
Investigations of the Factors Affecting the Performance of a Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
961
973
.
24.
Li
,
H. M.
,
Liu
,
C. Y.
, and
Damodaran
,
M.
,
1993
, “
Analytical Study of the Flow and Heat Transfer in a Rotating Heat Pipe
,”
Heat Recovery Syst. CHP
,
13
(
2
), pp.
115
122
.
25.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2004
, “
Experimental Investigation on the Heat Transfer Characteristics of Axial Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4721
4731
.
26.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2008
, “
Heat Transfer in the Evaporator Section of Moderate-Speed Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1542
1550
.
27.
Yaws
,
C. L.
,
1999
,
Chemical Properties Handbook: Physical, Thermodynamics, Environmental Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals
,
McGraw-Hill
, New York.
28.
Dow Chemical Company
, 1997, “
Dowtherm, A. Heat Transfer Fluid—Product Technical Data
,” Dow Chemical Company, Midland, MI, accessed Aug. 20, 2018, http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0030/0901b803800303cd.pdf
29.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2001
, “
The NIST Chemistry WebBook:  A Chemical Data Resource on the Internet
,”
J. Chem. Eng. Data
,
46
(
5
), pp.
1059
1063
.
30.
Ghatee
,
M. H.
, and
Sanchooli
,
M.
,
2003
, “
Viscosity and Thermal Conductivity of Cesium Vapor at High Temperatures
,”
Fluid Phase Equilib.
,
214
(
2
), pp.
197
209
.
31.
Colonna
,
P.
, and
Van der Stelt
,
T. P.
,
2004
, “
FluidProp: A Program for the Estimation of Thermo-Physical Properties of Fluids, Energy Technology Section
,” Delft University of Technology, Delft, The Netherlands.
32.
Busse
,
C. A.
,
1973
, “
Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes
,”
Int. J. Heat Mass Transfer
,
16
(
1
), pp.
169
186
.
33.
Nemec
,
P.
,
Čaja
,
A.
, and
Malcho
,
M.
,
2013
, “
Mathematical Model for Heat Transfer Limitations of Heat Pipe
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
126
136
.
You do not currently have access to this content.