In this study, effects of extended jet holes to heat transfer and flow characteristics of jet impingement cooling were numerically investigated. Cross-flow in the impinging jet cooling adversely affects the heat transfer on the target surface. The main purpose of this study is to reduce the negative effect of cross-flow on heat transfer by extending jet holes toward the target surface with nozzles. This study has been conducted under turbulent flow condition (15,000 ≤ Re  ≤  45,000). The surface of the turbine blade, which is the target surface, has been modeled as a flat plate. The effect of the ribs, placed on the target surface, on the heat transfer has been also investigated, and the results were compared with the flat surface. The parameters such as average and local Nusselt numbers on the target surface, flow characteristics, and compressor power have been examined in detail. It was obtained from the numerical results that the average Nusselt number increases with decreasing the gap between the target surface and the nozzle. In addition, the higher average Nusselt number was obtained on the flat surface than the ribbed surface. The lowest compressor power was achieved in the 5Dj nozzle gap for the flat surface and in the 4Dj nozzle gap for the ribbed surface.

References

References
1.
Florschuetz
,
L. W.
, and
Su
,
C. C.
,
1987
, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
74
82
.
2.
Allauddin
,
U.
,
Uddin
,
N.
, and
Weigand
,
B.
,
2013
, “
Heat Transfer Enhancement by Jet Impingement on a Flat Surface With Detached-Ribs Under Cross-Flow Conditions
,”
Numer. Heat Transfer, Part A
,
63
(
12
), pp.
921
940
.
3.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.
4.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.
5.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
6.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.
7.
Li
,
G.
,
Zheng
,
Y.
,
Hu
,
G.
, and
Zhang
,
Z.
,
2014
, “
Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow
,”
Chin. J. Chem. Eng.
,
22
(
5
), pp.
489
495
.
8.
Nuntadusit
,
C.
,
Wae-hayee
,
M.
,
Bunyajitradulya
,
A.
, and
Eiamsa-ard
,
S.
,
2012
, “
Heat Transfer Enhancement by Multiple Swirling Impinging Jets With Twisted-Tape Swirl Generators
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
102
107
.
9.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.
10.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
11.
Koopman
,
R. N.
, and
Sparrow
,
E. M.
,
1976
, “
Local and Average Transfer Coefficients Due to an Impinging Row of Jets
,”
Int. J. Heat Mass Transfer
,
19
(
6
), pp.
673
683
.
12.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.
13.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
14.
Wang
,
T.
,
Lin
,
M.
, and
Bunker
,
R. S.
,
2000
, “
Flow and Heat Transfer of Confined Impingement Jets Cooling
,”
ASME
Paper No. 2000-GT-0223.
15.
Rundström
,
D.
, and
Moshfegh
,
B.
,
2009
, “
Large-Eddy Simulation of an Impinging Jet in a Cross-Flow on a Heated Wall-Mounted Cube
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
921
931
.
16.
Tan
,
L.
,
Zhang
,
J. Z.
, and
Xu
,
H. S.
,
2014
, “
Jet Impingement on a Rib-Roughened Wall Inside Semi-Confined Channel
,”
Int. J. Therm. Sci.
,
86
, pp.
210
218
.
17.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
.
18.
Zhang
,
D.
,
Qu
,
H.
,
Lan
,
J.
,
Chen
,
J.
, and
Xie
,
Y.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Protrusioned Surface
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
18
28
.
19.
Uysal
,
Ü.
,
Korkmaz
,
Y.
,
Sözbir
,
N.
, and
Hirca
,
A. H.
,
2014
, “
Gaz Türbini Kanatlari Kanallarinda Soğutma Performansinin Araştirilmasi
,”
J. Aeronaut. Space Technol. (Havacilik ve Uzay Teknol. Derg.)
,
7
(
2
), p.
12
.
20.
Xiao
,
Y.
,
Tang
,
H. W.
,
Liang
,
D. F.
, and
Zhang
,
J. D.
,
2011
, “
Numerical Study of Hydrodynamics of Multiple Tandem Jets in Cross Flow
,”
J. Hydrodyn.
,
23
(
6
), pp.
806
813
.
21.
Naik-Nimbalkar
,
V. S.
,
Suryawanshi
,
A. D.
,
Patwardhan
,
A. W.
,
Banerjee
,
I.
,
Padmakumar
,
G.
, and
Vaidyanathan
,
G.
,
2011
, “
Twin Jets in Cross-Flow
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2616
2626
.
22.
Wang
,
C.
,
Wang
,
L.
, and
Sundén
,
B.
,
2015
, “
A Novel Control of Jet Impingement Heat Transfer in Cross-Flow by a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
88
, pp.
82
90
.
23.
Wang
,
C.
,
Luo
,
L.
,
Wang
,
L.
, and
Sundén
,
B.
,
2016
, “
Effects of Vortex Generators on the Jet Impingement Heat Transfer at Different Cross-Flow Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
96
, pp.
278
286
.
24.
Guoneng
,
L.
,
Zhihua
,
X.
,
Youqu
,
Z.
,
Wenwen
,
G.
, and
Cong
,
D.
,
2016
, “
Experimental Study on Convective Heat Transfer From a Rectangular Flat Plate by Multiple Impinging Jets in Laminar Cross Flows
,”
Int. J. Therm. Sci.
,
108
, pp.
123
131
.
25.
Uysal
,
U.
,
Korkmaz
,
Y.
, and
Chyu
,
M. K.
,
2015
, “
Effect of Jet Shape on the Heat Transfer in Trailing Edge Model
,”
First Thermal Fluids Engineering Summer Conference
(
TFESC
), New York, Aug. 9–12, pp. 1233–1244.https://www.researchgate.net/publication/301336171_EFFECT_OF_JET_SHAPE_ON_THE_HEAT_TRANSFER_IN_TRAILING_EDGE_MODEL
26.
Elwekeel
,
F. N. M.
, and
Abdala
,
A. M. M.
,
2016
, “
Effects of Mist and Jet Cross-Section on Heat Transfer for a Confined Air Jet Impinging on a Flat Plate
,”
Int. J. Therm. Sci.
,
108
, pp.
174
184
.
27.
Rao
,
Y.
,
2016
, “
Multiple-Jet Impingement Heat Transfer in Double-Wall Cooling Structures With Pin Fins and Effusion Holes
,”
Int. J. Therm. Sci.
,
108
, pp.
489
495
.
28.
Wan
,
C.
,
Rao
,
Y.
, and
Chen
,
P.
,
2015
, “
Numerical Predictions of Jet Impingement Heat Transfer on Square Pin-Fin Roughened Plates
,”
Appl. Therm. Eng.
,
80
, pp.
301
309
.
29.
Xu
,
P.
,
Sasmito
,
A. P.
, and
Mujumdar
,
A. S.
,
2016
, “
A Computational Study of Heat Transfer Under Twin Turbulent Slot Jets Impinging on Planar Smooth and Rough Surfaces
,”
Therm. Sci.
,
20
(
Suppl. 1
), pp.
s47
s57
.
30.
Xu
,
P.
,
Sasmito
,
A. P.
,
Qiu
,
S.
,
Mujumdar
,
A. S.
,
Xu
,
L.
, and
Geng
,
L.
,
2016
, “
Heat Transfer and Entropy Generation in Air Jet Impingement on a Model Rough Surface
,”
Int. Commun. Heat Mass Transfer
,
72
, pp.
48
56
.
31.
Xu
,
P.
,
Qiu
,
S.
,
Yu
,
M.
,
Qiao
,
X.
, and
Mujumdar
,
A. S.
,
2012
, “
A Study on the Heat and Mass Transfer Properties of Multiple Pulsating Impinging Jets
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
378
382
.
32.
Qiu
,
S.
,
Xu
,
P.
,
Geng
,
L.
,
Mujumdar
,
A.
,
Jiang
,
Z.
, and
Yang
,
J.
,
2017
, “
Enhanced Heat Transfer Characteristics of Conjugated Air Jet Impingement on a Finned Heat Sink
,”
Therm. Sci.
,
21
(
1
), pp.
279
288
.
33.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
,
51
(
6
), pp.
565
583
.
34.
Kannan
,
B. T.
, and
Sundararaj
,
S.
,
2015
, “
Steady State Jet Impingement Heat Transfer From Axisymmetric Plates With and Without Grooves
,”
Procedia Eng.
,
127
, pp.
25
32
.
35.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2009
, “
Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces
,”
Numer. Heat Transfer, Part B
,
55
(
4
), pp.
273
294
.
36.
Zhou
,
T.
,
Xu
,
D.
,
Chen
,
J.
,
Cao
,
C.
, and
Ye
,
T.
,
2016
, “
Numerical Analysis of Turbulent Round Jet Impingement Heat Transfer at High Temperature Difference
,”
Appl. Therm. Eng.
,
100
, pp.
55
61
.
37.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
,
1998
, “
Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1845
1855
.
38.
Al Taie
,
A.
, and
Abd
,
H. S.
,
2017
, “
Experimental and Numerical Investigation of Impingement Cooling of Gas Turbine Combustion Chamber Liner
,”
J. Basic Appl. Sci. Res.
,
7
(
1
), pp.
17
35
.https://www.textroad.com/pdf/JBASR/J.%20Basic.%20Appl.%20Sci.%20Res.,%207(1)17-35,%202017.pdf
39.
Onur
,
N.
,
Turgut
,
O.
,
Arslan
,
K.
, and
Kurtul
,
Ö.
,
2009
, “
An Experimental and Three-Dimensional Numerical Study on the Convective Heat Transfer Inside a Trapezoidal Duct Under Constant Wall Temperature
,”
Heat Mass Transfer
,
45
(
3
), pp.
263
274
.
40.
Dutta
,
R.
,
Dewan
,
A.
, and
Srinivasan
,
B.
,
2013
, “
Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
65
, pp.
750
764
.
41.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
532
540
.
42.
Yang
,
Y. T.
,
Wei
,
T. C.
, and
Wang
,
Y. H.
,
2011
, “
Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi-Circular Concave Surface
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
482
489
.
43.
Rhea
,
S.
,
Bini
,
M.
,
Fairweather
,
M.
, and
Jones
,
W. P.
,
2009
, “
RANS Modelling and LES of a Single-Phase, Impinging Plane Jet
,”
Comput. Chem. Eng.
,
33
(
8
), pp.
1344
1353
.
44.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
45.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Jet Impingement Heat Transfer: Correlations, and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
46.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2018
, “
Numerical Analysis of Heat Transfer From a Moving Surface Due to Impingement of Slot Jets
,”
Heat Transfer Eng.
,
39
(
2
), pp.
98
106
.
47.
Ekiciler
,
R.
,
Çetinkaya
,
M. S. A.
, and
Arslan
,
K.
,
2019
, “
Convective Heat Transfer Investigation of a Confined Air Slot-Jet Impingement Cooling on Corrugated Surfaces With Different Wave Shapes
,”
ASME J. Heat Transfer
,
141
(
2
), p. 022202.
48.
Bhagwat
,
A. B.
, and
Sridharan
,
A.
,
2016
, “
Numerical Simulation of Oblique Air Jet Impingement on a Heated Flat Plate
,”
J. Therm. Sci. Eng. Appl.
,
9
(
1
), pp.
011010
011017
.
49.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
50.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
51.
Kakaç
,
S.
, and
Liu
,
H.
,
2002
,
Heat Exchangers: Selection, Rating, and Thermal Design
,
2nd ed.
,
CRC Press
, New York.
You do not currently have access to this content.