This paper addresses heat distribution issues in fused filament fabrication (FFF) process. Three-dimensional (3D) numerical simulations and experimental investigations are performed during additive manufacturing of parts by FFF process. The transient numerical simulations of the filament temperature field are based on the finite difference method. Experimental measurements of the temperature field are carried out using infrared thermography. The proposed model mainly highlights the contribution of heat exchange from the nozzle to the fabricated part and from filament to filament. Optimum adhesion of filaments deposited by FFF requires control of the thermal history. The nozzle radiation is taken into account as a source term in the heat balance equation. The temperature fields of the printed parts computed by numerical simulations are in very good agreement with the temperature fields measured by infrared thermograph. The 3D numerical model provides information on how the nozzle affects the temperature field of the printed part. This source term must be taken into account for the optimization of the FFF process.

References

References
1.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
.
2.
Kousiatza
,
C.
,
Chatzidai
,
N.
, and
Karalekas
,
D.
,
2017
, “
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
,”
Sensors
,
17
(
3
), p.
456
.
3.
Serra
,
T.
,
Planell
,
J. A.
, and
Navarro
,
M.
,
2013
, “
High-Resolution PLA-Based Composite Scaffolds Via 3-D Printing Technology
,”
Acta Biomater.
,
9
(
3
), pp.
5521
5530
.
4.
Jin
,
Y.
,
Li
,
H.
,
He
,
Y.
, and
Fu
,
J.
,
2015
, “
Quantitative Analysis of Surface Profile in Fused Deposition Modelling
,”
Addit. Manuf.
,
8
, pp.
142
148
.
5.
Zhou
,
X.
, and
Hsieh
,
S.-J.
,
2017
, “
Thermal Analysis of Fused Deposition Modeling Process Using Infrared Thermography Imaging and Finite Element Modeling
,”
Proc. SPIE
,
10214
, p.
1021409
.
6.
Yin
,
J.
,
Lu
,
C.
,
Fu
,
J.
,
Huang
,
Y.
, and
Zheng
,
Y.
,
2018
, “
Interfacial Bonding During Multi-Material Fused Deposition Modeling (FDM) Process Due to Inter-Molecular Diffusion
,”
Mater. Des.
,
150
, pp.
104
112
.
7.
Costa
,
S. F.
,
Duarte
,
F. M.
, and
Covas
,
J. A.
,
2017
, “
Estimation of Filament Temperature and Adhesion Development in Fused Deposition Techniques
,”
J. Mater. Process. Technol.
,
245
, pp.
167
179
.
8.
Sun
,
Q.
,
Rizvi
,
G. M.
,
Bellehumeur
,
C. T.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyp. J.
,
14
(
2
), pp.
72
80
.
9.
Drummer
,
D.
,
Rietzel
,
D.
, and
Cifuentes‐Cuéllar
,
S.
,
2012
, “
Suitability of PLA/TCP for Fused Deposition Modeling
,”
Rapid Prototyp. J.
,
18
(
6
), pp.
500
507
.
10.
Xinhua
,
L.
,
Shengpeng
,
L.
,
Zhou
,
L.
,
Xianhua
,
Z.
,
Xiaohu
,
C.
, and
Zhongbin
,
W.
,
2015
, “
An Investigation on Distortion of PLA Thin-Plate Part in the FDM Process
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
1117
1126
.
11.
Zhang
,
Y.
, and
Chou
,
Y. K.
,
2006
, “
Three-Dimensional Finite Element Analysis Simulations of the Fused Deposition Modelling Process
,”
Proc. Inst. Mech. Eng. Part B
,
220
(
10
), pp.
1663
1671
.
12.
Ziemian
,
C. W.
,
Okwara
,
M.
, and
Ziemian
,
S.
,
2015
, “
Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene
,”
Rapid Prototyp. J.
,
21
(
3
), pp.
270
278
.
13.
Wolszczak
,
P.
,
Lygas
,
K.
,
Paszko
,
M.
, and
Wach
,
R. A.
,
2018
, “
Heat Distribution in Material During Fused Deposition Modelling
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
615
622
.
14.
Alimardani
,
M.
,
Paul
,
C. P.
,
Toyserkani
,
E.
, and
Khajepour
,
A.
,
2010
, “
24—Multiphysics Modelling of Laser Solid Freeform Fabrication Techniques
,”
Advances in Laser Materials Processing
(Woodhead Publishing Series in Welding and Other Joining Technologies),
Woodhead Publishing
, Cambridge, UK, pp.
765
791
.
15.
Costa
,
S. F.
,
Duarte
,
F. M.
, and
Covas
,
J. A.
,
2008
, “
Towards Modelling of Free Form Extrusion: Analytical Solution of Transient Heat Transfer
,”
Int. J. Mater. Form.
,
1
(
S1
), pp.
703
706
.
16.
Zhang
,
J.
,
Wang
,
X. Z.
,
Yu
,
W. W.
, and
Deng
,
Y. H.
,
2017
, “
Numerical Investigation of the Influence of Process Conditions on the Temperature Variation in Fused Deposition Modeling
,”
Mater. Des.
,
130
, pp.
59
68
.
17.
Ray
,
M. S.
,
1994
,
Thermal Radiation Heat Transfer
,
3rd ed.
,
R.
Siegel
and
J. R.
Howell
, eds.,
Hemisphere Publishing Corporation
, Taylor & Francis, London, p.
1072
.
18.
Seppala
,
J. E.
, and
Migler
,
K. D.
,
2016
, “
Infrared Thermography of Welding Zones Produced by Polymer Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
71
76
.
You do not currently have access to this content.