Viscoelastic materials are a kind of representative passive vibration control materials with many applications in civil engineering for earthquake mitigation in building structures, and these materials often serve in a thermo-elastic coupling environment. In this work, a one-dimensional magneto-thermoviscoelastic problem of a single-layer viscoelastic plate is investigated with memory-dependent derivative and nonlocal effect in the context of generalized thermo-elasticity. The plate is placed in a magnetic field, and the upper surface is subjected to a thermal shock. The governing equations for the single-layer plate are formulated considering the time delay and the kernel function of the memory-dependent derivative, nonlocal effect, temperature-dependent properties, and magnetic field. The Laplace transform and its numerical inversion are employed to solve this problem. The nondimensional temperature, displacement, and stress are calculated and presented graphically. Based on the numerical results, the influence of time delay and kernel function of the memory-dependent derivative, nonlocal effect parameters, temperature-dependent properties, and magnetic field parameters on the distributions of the nondimensional temperature, displacement, and stress are discussed.

References

References
1.
Rao
,
M. D.
,
2003
, “
Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplanes
,”
J. Sound Vib.
,
262
(
3
), pp.
457
474
.
2.
Xu
,
Z. D.
,
Xu
,
F. H.
, and
Chen
,
X.
,
2016
, “
Intelligent Vibration Isolation and Mitigation of a Platform by Using MR and VE Devices
,”
ASCE J. Aerosp. Eng.
,
29
(
4
), p.
04016010
.
3.
Xu
,
Z. D.
,
Huang
,
X. H.
,
Xu
,
F. H.
, and
Yuan
,
J.
,
2019
, “
Parameters Optimization of Vibration Isolation and Mitigation System for Precision Platforms Using Non-Dominated Sorting Genetic Algorithm
,”
Mech. Syst. Signal Process.
,
128
, pp.
191
201
.
4.
Tsai
,
C. S.
, and
Lee
,
H. H.
,
1993
, “
Applications of Viscoelastic Dampers to High-Rise Buildings
,”
ASCE J. Struct. Eng.
,
120
(
12
), pp.
1222
1233
.
5.
Xu
,
Z. D.
,
Zhao
,
H. T.
, and
Li
,
A. Q.
,
2004
, “
Optimal Analysis and Experimental Study on Structures With Viscoelastic Dampers
,”
J. Sound Vib.
,
273
(
3
), pp.
607
618
.
6.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.
7.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(
1
), pp.
1
7
.
8.
Abd-Alla
,
A. N.
, and
Abbas
,
I.
,
2002
, “
A Problem of Generalized Magnetothermoelasticity for an Infinitely Long, Perfectly Conducting Cylinder
,”
J. Therm. Stresses
,
25
(
11
), pp.
1009
1025
.
9.
Abbas
,
I. A.
,
2014
, “
A GN Model Based Upon Two-Temperature Generalized Thermoelastic Theory in an Unbounded Medium With a Spherical Cavity
,”
Appl. Math. Comput.
,
245
, pp.
108
115
.
10.
Ezzat
,
M. A.
, and
El-Karamany
,
A. S.
,
2003
, “
On Uniqueness and Reciprocity Theorems for Generalized Thermo-Viscoelasticity With Thermal Relaxation
,”
Can. J. Phys.
,
81
(
6
), pp.
823
833
.
11.
Ezzat
,
M. A.
,
2004
, “
Discontinuities in Generalized Thermo-Viscoelasticity Under Four Theories
,”
J. Therm. Stresses
,
27
(
12
), pp.
1187
1212
.
12.
Sheoran
,
S. S.
,
Kalkal
,
K. K.
, and
Deswal
,
S.
,
2016
, “
Fractional Order Thermo-Viscoelastic Problem With Temperature Dependent Modulus of Elasticity
,”
Mech. Adv. Mater. Struct.
,
23
(
4
), pp.
407
414
.
13.
Sherief
,
H. H.
,
Allam
,
M. N.
, and
El-Hagary
,
M. A.
,
2011
, “
Generalized Theory of Thermoviscoelasticity and a Half-Space Problem
,”
Int. J. Thermophys.
,
32
(
6
), pp.
1271
1295
.
14.
Meral
,
F. C.
,
Royston
,
T. J.
, and
Magin
,
R.
,
2010
, “
Fractional Calculus in Viscoelasticity: An Experimental Study
,”
Commun. Nonlinear Sci.
,
15
(
4
), pp.
939
945
.
15.
Xu
,
Z. D.
,
Liao
,
Y. X.
,
Ge
,
T.
, and
Xu
,
C.
,
2016
, “
Experimental and Theoretical Study on Viscoelastic Dampers With Different Matrix Rubbers
,”
ASCE J. Eng. Mech.
,
142
(
8
), p.
04016051
.
16.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
17.
Sherief
,
H. H.
,
El-Sayed
,
A. M. A.
, and
El-Latief
,
A. M. A.
,
2010
, “
Fractional Order Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
269
275
.
18.
Youssef
,
H. M.
,
2010
, “
Theory of Fractional Order Generalized Thermoelasticity
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061301
.
19.
Ezzat
,
M. A.
, and
Karamany
,
A. S. E.
,
2011
, “
Fractional Order Heat Conduction Law in Magneto-Thermoelasticity Involving Two Temperatures
,”
Z. Angew. Math. Phys.
,
62
(
5
), pp.
937
952
.
20.
Abbas
,
I. A.
,
2014
, “
A Problem on Functional Graded Material Under Fractional Order Theory of Thermoelasticity
,”
Theor. Appl. Fract. Mech.
,
74
, pp.
18
22
.
21.
Xu
,
Y. S.
,
Xu
,
Z. D.
,
He
,
T. H.
,
Chen
,
J. X.
, and
Xu
,
C.
,
2017
, “
A Fractional-Order Generalized Thermoelastic Problem of a Bilayer Piezoelectric Plate for Vibration Control
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082003
.
22.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2015
, “
Thermo-Viscoelastic Materials With Fractional Relaxation Operators
,”
App. Math. Model.
,
39
(
23–24
), pp.
7499
7512
.
23.
Diethelm
,
K.
,
2010
,
Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer-Verlag
,
Berlin
.
24.
Wang
,
J. L.
, and
Li
,
H. F.
,
2011
, “
Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1562
1567
.
25.
Yu
,
Y. J.
,
Hu
,
W.
, and
Tian
,
X. G.
,
2014
, “
A Novel Generalized Thermoelasticity Model Based on Memory-Dependent Derivative
,”
Int. J. Eng. Sci.
,
81
(
811
), pp.
123
134
.
26.
El-Karamany
,
A. S.
, and
Ezzat
,
M. A.
,
2015
, “
Modified Fourier's Law With Time Delay and Kernel Function: Application in Thermoelasticity
,”
J. Therm. Stresses
,
38
(
7
), pp.
811
834
.
27.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2016
, “
Electro-Thermoelasticity Theory With Memory-Dependent Derivative Heat Transfer
,”
Int. J. Eng. Sci.
,
99
, pp.
22
38
.
28.
Yu
,
Y. J.
,
Tian
,
X. G.
, and
Liu
,
X. R.
,
2015
, “
Size-Dependent Generalized Thermoelasticity Using Eringen's Nonlocal Model
,”
Eur. J. Mech.
,
51
, pp.
96
106
.
29.
Eringen
,
A. C.
,
2002
, “
Nonlocal Continuum Field Theories
,”
Springer-Verlag
,
New York
.
30.
Li
,
C. L.
,
Guo
,
H. L.
, and
Tian
,
X. G.
,
2017
, “
A Size-Dependent Generalized Thermoelastic Diffusion Theory and Its Application
,”
J. Therm. Stresses
,
40
(
5
), pp.
603
626
.
31.
Abbas
,
I. A.
, and
Youssef
,
H. M.
,
2012
, “
A Nonlinear Generalized Thermoelasticity Model of Temperature-Dependent Materials Using Finite Element Method
,”
Int. J. Thermophys.
,
33
(
7
), pp.
1302
1313
.
32.
Zenkour
,
A. M.
, and
Abbas
,
I. A. A.
,
2014
, “
Generalized Thermoelasticity Problem of an Annular Cylinder With Temperature-Dependent Density and Material Properties
,”
Int. J. Mech. Sci.
,
84
, pp.
54
60
.
33.
Aouadi
,
M.
,
2006
, “
Generalized Thermo-Piezoelectric Problems With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6347
6358
.
34.
Youssef
,
H. M.
, and
Abbas
,
I. A.
,
2007
, “
Thermal Shock Problem of Generalized Thermoelasticity for an Infinitely Long Annular Cylinder With Variable Thermal Conductivity
,”
Comput. Methods Sci. Tech.
,
13
(
2
), pp.
95
100
.
35.
Abbas
,
I. A.
, and
Abo-Dahab
,
S. M.
,
2014
, “
On the Numerical Solution of Thermal Shock Problem for Generalized Magneto-Thermoelasticity for an Infinitely Long Annular Cylinder With Variable Thermal Conductivity
,”
J. Comput. Theor. Nanosci.
,
11
(
3
), pp.
607
618
.
36.
Othman
,
M. I. A.
,
Atwa
,
S. Y.
, and
Farouk
,
R. M.
,
2008
, “
Generalized Magneto-Thermoviscoelastic Plane Waves Under the Effect of Rotation Without Energy Dissipation
,”
Int. J. Eng. Sci.
,
46
(
7
), pp.
639
653
.
37.
Ezzat
,
M. A.
, and
El-Bary
,
A. A.
,
2017
, “
Generalized Fractional Magneto-Thermo-Viscoelasticity
,”
Microsyst. Technol.
,
23
(
6
), pp.
1767
1777
.
38.
Debarghya
,
B.
, and
Mridula
,
K.
,
2018
, “
Short-Time Analysis on Two-Temperature Magneto-Thermo-Viscoelastic Response in an Infinite Rotating Medium With Spherical Cavity
,”
J. Comput. Math. Sci.
,
9
(
4
), pp.
264
281
.
39.
Abbas
,
I. A.
, and
Youssef
,
H. M.
,
2013
, “
Two-Temperature Generalized Thermoelasticity Under Ramp-Type Heating by Finite Element Method
,”
Meccanica
,
48
(
2
), pp.
331
339
.
40.
Rishin
,
V. V.
,
Lyashenko
,
B. A.
,
Akinin
,
K. G.
, and
Nadezhdin
,
G. N.
,
1973
, “
Temperature Dependence of Adhesion Strength and Elasticity of Some Heat-Resistant Coatings
,”
Strength Mater.
,
5
(
1
), pp.
123
126
.
41.
Durbin
,
F.
,
1974
, “
Numerical Inversion of Laplace Transforms: An Effective Improvement of Dubner and Abate's Method
,”
Comput. J.
,
17
(
4
), pp.
371
376
.
42.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for the Numerical Inversion of Laplace Transforms
,”
J. Comput. App. Math.
,
10
(
1
), pp.
113
132
.
43.
Elhagary
,
M. A.
,
2013
, “
A Thermo-Mechanical Shock Problem for Generalized Theory of Thermoviscoelasticity
,”
Int. J. Thermophys.
,
34
(
1
), pp.
170
188
.
44.
He
,
T. H.
, and
Cao
,
L.
,
2009
, “
A Problem of Generalized Magneto-Thermoelastic Thin Slim Strip Subjected to a Moving Heat Source
,”
Math. Comput. Model.
,
49
(
7–8
), pp.
1710
1720
.
You do not currently have access to this content.