In order to ensure flight safety in cold winter, aircraft ground deicing is crucial and necessary. In Chinese deicing fluid heating system, the helically coiled tube is paramount exchanger to heat deicing fluid. The deicing fluid is ethylene-glycol-based mixture with high viscosity. Aiming at heat transfer enhancement of deicing fluid, ring rib is formed by an embossed tube wall toward the internal of the tube; thus, transversely corrugated helically coiled tube (TCHC) is achieved. Depth and width are two key geometrical parameters of ring rib. Based on field synergy principle, the influence of depth–diameter ratio (H/D) and width-diameter ratio (w/D) is investigated through numerical simulation. The results show that outlet temperature, mean convection heat transfer coefficient, and Nusselt number have similar trends, which first increase and then decrease nonlinearly. The variation of flow resistance coefficient is inversely proportional to Reynolds number. Especially, the effect of H/D is more significant than that of w/D. Field synergy angle and velocity field are also analyzed to reveal the mechanism of heat transfer. TCHC performs better than the original tube. Orthogonal experiment calculates the outlet temperature of TCHC when H/D and w/D change. The combination of H/D=0.075 and w/D=0.5 is best solution. TCHC effectively enhances heat transfer of deicing fluid. Therefore, TCHC is beneficial to improve the deicing efficiency and ensure the flight punctuality.

References

References
1.
Petit
,
J.
, and
Bonaccurso
,
E.
,
2014
, “
General Frost Growth Mechanism on Solid Substrates With Different Stiffness
,”
Langmuir ACS J. Surf. Colloids
,
30
(
4
), pp.
1160
1168
.
2.
Switzenbaum
,
M. S.
,
Veltman
,
S.
,
Mericas
,
D.
,
Wagoner
,
B.
, and
Schoenberg
,
T.
,
2001
, “
Optimal Management Practices for Airport Deicing Storm Water
,”
Chemosphere
,
43
(
8
), pp.
1051
1062
.
3.
Rasmussen
,
R.
,
Cole
,
J.
,
Moore
,
R. K.
, and
Kuperman
,
M.
,
2000
, “
Common Snowfall Conditions Associated With Aircraft Takeoff Accidents
,”
J. Aircr.
,
37
(
1
), pp.
110
116
.
4.
Hajiyev
,
C.
,
Aykan
,
R.
, and
Çalişkan
,
F.
,
2005
, “
Kalman Filter and Neural Network-Based Icing Identification Applied to A340 Aircraft Dynamics
,”
Aircr. Eng. Aerosp. Technol.
,
77
(
1
), pp.
23
33
.
5.
Saysroy
,
A.
, and
Eiamsa-Ard
,
S.
,
2017
, “
Enhancing Convective Heat Transfer in Laminar and Turbulent Flow Regions Using Multi-Channel Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
121
, pp.
55
74
.
6.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Turbulent Heat Transfer Enhancement in an Air-to-Water Heat Exchanger
,”
Proc. Inst. Mech. Eng., Part E
,
231
(
6
), pp.
1235
1248
.
7.
Mansour
,
M.
,
Liu
,
Z.
,
Janiga
,
G.
,
Nigam
,
K. D. P.
,
Sundmacher
,
K.
,
Thévenin
,
D.
, and
Zähringer
,
K.
,
2017
, “
Numerical Study of Liquid-Liquid Mixing in Helical Pipes
,”
Chem. Eng. Sci.
,
172
, pp.
250
261
.
8.
Lotfi
,
B.
,
Wang
,
Q. W.
, and
Sunden
,
B.
,
2016
, “
3D Fluid-Structure Interaction (FSI) Simulation of New Type Vortex Generators in Smooth Wavy Fin-and-Elliptical Tube Heat Exchanger
,”
Eng. Comput.
,
33
(
8
), pp.
2504
2529
.
9.
Karami
,
M.
,
Akhavan-Behabadi
,
M. A.
, and
Fakoor-Pakdaman
,
M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Nanofluid Flows Inside Corrugated Tubes
,”
Heat Transfer Eng.
,
37
(
1
), pp.
106
114
.
10.
Wongwises
,
S.
, and
Polsongkram
,
M.
,
2006
, “
Evaporation Heat Transfer and Pressure Drop of HFC-134a in a Helically Coiled Concentric Tube-in-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
49
(
23
), pp.
4386
4398
.
11.
Ting
,
H. H.
, and
Hou
,
S. S.
,
2016
, “
Numerical Investigation of CuO-Water Nanofluid Turbulent Convective Heat Transfer in Square Cross-Section Duct Under Constant Heat Flux
,”
Eng. Comput.
,
33
(
6
), pp.
1714
1728
.
12.
Zhang
,
C.
,
Wang
,
D.
, and
Xiang
,
S.
,
2017
, “
Numerical Investigation of Heat Transfer and Pressure Drop in Helically Coiled Tube With Spherical Corrugation
,”
Int. J. Heat Mass Transfer
,
113
, pp.
332
341
.
13.
Tanda
,
G.
,
2004
, “
Heat Transfer in Rectangular Channels With Transverse and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
229
243
.
14.
Momin
,
A. M. E.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3383
3396
.
15.
Xu
,
W.
,
Wang
,
S.
,
Zhang
,
Q.
,
Wang
,
Q.
,
Lu
,
H.
, and
Tan
,
H.
,
2016
, “
Experimental and Numerical Studies of Heat Transfer and Friction Factor of Therminol Liquid Phase Heat Transfer Fluid in a Ribbed Tube
,”
Appl. Therm. Eng.
,
95
, pp.
165
177
.
16.
Tang
,
X.
,
Dai
,
X.
, and
Zhu
,
D.
,
2015
, “
Experimental and Numerical Investigation of Convective Heat Transfer and Fluid Flow in Twisted Spiral Tube
,”
Int. J. Heat Mass Transfer
,
90
(
17–18
), pp.
523
541
.
17.
Fouda
,
A.
,
Nada
,
S. A.
,
Elattar
,
H. F.
,
Refaey
,
H. A.
, and
Bin-Mahfouz
,
A. S.
,
2018
, “
Thermal Performance Modeling of Turbulent Flow in Multi Tube in Tube Helically Coiled Heat Exchangers
,”
Int. J. Mech. Sci.
,
135
, pp.
621
638
.
18.
Mirgolbabaei
,
H.
,
2018
, “
Numerical Investigation of Vertical Helically Coiled Tube Heat Exchangers Thermal Performance
,”
Appl. Therm. Eng.
,
136
, pp.
252
259
.
19.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.
20.
Tao
,
W. Q.
,
He
,
Y. L.
, and
Wang
,
Q. W.
,
2002
, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4871
4879
.
21.
Zhu
,
X. W.
, and
Zhao
,
J. Q.
,
2016
, “
Improvement in Field Synergy Principle: More Rigorous Application, Better Results
,”
Int. J. Heat Mass Transfer
,
100
, pp.
347
354
.
22.
Jian
,
P. R.
,
Yang
,
W. M.
,
Cheng
,
L. S.
, and
Xie
,
P. C.
,
2017
, “
Numerical Analysis of Enhanced Heat Transfer by Incorporating Torsion Elements in the Homogenizing Section of Polymer Plasticization With the Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
115
, pp.
946
953
.
23.
Guo
,
J.
, and
Huai
,
X.
,
2016
, “
Numerical Investigation of Helically Coiled Tube From the Viewpoint of Field Synergy Principle
,”
Appl. Therm. Eng.
,
98
, pp.
137
143
.
24.
Meng
,
J. A.
,
Liang
,
X. G.
, and
Li
,
Z. X.
,
2005
, “
Field Synergy Optimization and Enhanced Heat Transfer by Multi-Longitudinal Vortexes Flow in Tube
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3331
3337
.
25.
He
,
Y. L.
,
Tao
,
W. Q.
,
Song
,
F. Q.
, and
Zhang
,
W.
,
2005
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics of Plain Plate Fin-and-Tube Heat Exchangers From View Point of Field Synergy Principle
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
459
473
.
26.
Zhai
,
Y. L.
,
Li
,
Z. H.
,
Wang
,
H.
, and
Xu
,
J. X.
,
2016
, “
Analysis of Field Synergy Principle and the Relationship Between Secondary Flow and Heat Transfer in Double-Layered Microchannels With Cavities and Ribs
,”
Int. J. Heat Mass Transfer
,
101
, pp.
190
197
.
27.
Amin
,
E.
, and
Ehsan
,
R.
,
2015
, “
Numerical Study of Flow Patterns and Heat Transfer in Mini Twisted Oval Tubes
,”
Int. J. Mod. Phys. C
,
26
(
12
), pp.
295
313
.
28.
Liu
,
C.
,
Bu
,
W.
, and
Xu
,
D.
,
2017
, “
Multi-Objective Shape Optimization of a Plate-Fin Heat Exchanger Using CFD and Multi-Objective Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
111
, pp.
65
82
.
29.
Ma
,
H. L.
,
Oztekin
,
D. E.
,
Bayraktar
,
S.
,
Yayla
,
S.
, and
Oztekin
,
A.
,
2015
, “
Computational Fluid Dynamics and Heat Transfer Analysis for a Novel Heat Exchanger
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051801
.
30.
Yang
,
Y.
,
Li
,
Y.
,
Si
,
B.
, and
Zheng
,
J.
,
2015
, “
Performance Evaluation of Heat Transfer Enhancement for Offset Strip Fins Used in Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
,
137
(
10
), p.
101901
.
31.
Fage
,
A.
, and
Preston
,
J. H.
,
1941
, “On
Transition From Laminar to Turbulent Flow in the Boundary Layer
,”
Proc. R. Soc. A
,
178
(
973
), pp.
201
227
.
32.
Sahin
,
H. M.
,
Baysal
,
E.
,
Dal
,
A. R.
, and
Sahin
,
N.
,
2015
, “
Investigation of Heat Transfer Enhancement in a New Type Heat Exchanger Using Solar Parabolic Trough Systems
,”
Int. J. Hydrogen Energy
,
40
(
44
), pp.
15254
15266
.
33.
Boulemtafes-Boukadoum
,
A.
, and
Benzaoui
,
A.
,
2014
, “
CFD Based Analysis of Heat Transfer Enhancement in Solar Air Heater Provided With Transverse Rectangular Ribs
,”
Energy Procedia
,
50
, pp.
761
772
.
34.
Yang
,
Y. T.
, and
Hwang
,
M. L.
,
2009
, “
Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2956
2965
.
35.
Salimpour
,
M. R.
,
Golmohammadi
,
K.
,
Sedaghat
,
A.
, and
Campo
,
A.
,
2015
, “
Experimental Study of the Turbulent Convective Heat Transfer of Titanium Oxide Nanofluid Flowing Inside Helically Corrugated Tubes
,”
J. Mech. Sci. Technol.
,
29
(
9
), pp.
4011
4016
.
36.
Zachár
,
A.
,
2010
, “
Analysis of Coiled-Tube Heat Exchangers to Improve Heat Transfer Rate With Spirally Corrugated Wall
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3928
3939
.
37.
Wang
,
W.
,
Zhang
,
Y.
,
Li
,
B.
,
Han
,
H.
, and
Gao
,
X.
,
2017
, “
Influence of Geometrical Parameters on Turbulent Flow and Heat Transfer Characteristics in Outward Helically Corrugated Tubes
,”
Energy Convers. Manage.
,
136
, pp.
294
306
.
38.
White
,
F. M.
,
1994
,
Fluid Mechanics
,
McGraw-Hill
,
New York
, pp.
215
235
.
39.
Farhadi
,
A.
,
Mayrhofer
,
A.
,
Tritthart
,
M.
,
Glas
,
M.
, and
Habersack
,
H.
,
2017
, “
Accuracy and Comparison of Standard k−ε With Two Variants of k–ω Turbulence Models in Fluvial Applications
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
216
235
.
40.
Wu
,
M.
,
Wang
,
C.
,
Nie
,
Q.
,
Li
,
Y.
, and
Zhou
,
R.
,
2018
, “
Thermal Analysis of High Viscosity Deicing Fluid in the Heating System
,”
J. Therm. Anal. Calorim.
,
134
(
3
), pp.
2147
2156
.
41.
Wu
,
M.
,
Wang
,
C.
,
Li
,
Y.
, and
Nie
,
Q.
,
2017
, “
Research on the Heating of Deicing Fluid in a New Reshaped Coiled Tube
,”
Math. Probl. Eng.
,
2017
, p.
3254631
.
42.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
43.
Sun
,
S.
, and
Wang
,
L.
,
2010
, “
Study on the Instant Heater Structure for Aircraft Deicing Fluid
,”
Mach. Tool Hydraul.
,
38
(
8
), pp.
59
60
.
44.
Schoenberg
,
T.
,
Veltman
,
S.
, and
Switzenbaum
,
M.
,
2001
, “
Kinetics of Anaerobic Degradation of Glycol-Based Type I Aircraft Deicing Fluids
,”
Biodegradation
,
12
(
1
), pp.
59
68
.
45.
Guo
,
Z. Y.
,
Tao
,
W. Q.
, and
Shah
,
R. K.
,
2005
, “
The Field Synergy (Coordination) Principle and Its Applications in Enhancing Single Phase Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1797
1807
.
46.
Meng
,
J. A.
,
Chen
,
Z. J.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
,
2005
, “
Field Coordination Analysis and Convection Heat Transfer Enhancement in Duct
,”
J. Eng. Thermophys.
,
24
(
4
), pp.
652
654
.
You do not currently have access to this content.