The growing electrification of transportation systems is dramatically increasing the waste heat that must be dissipated from high-density power electronics. Transformative embedded heat spreading technologies must be developed in next-generation systems to enable air cooling of power semiconductors with heat fluxes exceeding 500 W/cm2 over large hotspot areas up to 1 cm2. In this study, vapor chamber heat spreaders, or thermal ground planes (TGPs), with customized wick structures are investigated as one possibility. A 10 cm × 10 cm TGP with hybrid wick, which is a blend of a biporous wick with a standard monoporous wick, was designed. The TGP was tested in combination with a straight pin fin heat sink under air jet impingement and a 1 cm2 size heat source. The experimental performance of the hybrid wick TGP was compared under the same air-cooled conditions with an off-the-shelf TGP of the same size from a commercial vendor and a TGP with a biporous wick only. The customized hybrid wick TGP exhibits ∼28% lower thermal resistance compared with a traditional commercial TGP, and the capillary limit heat flux is measured as 450 W/cm2. Technical challenges in extending this capillary limit heat flux value and TGP integration into packaged electronics are described.

References

References
1.
Dede
,
E. M.
,
Zhou
,
F.
, and
Joshi
,
S. N.
,
2016
, “
Key Technologies and Challenges for Air Cooling of Wide Band-Gap Electronics
,”
EVTeC & APE Japan
, Yokohama, Japan, May 25–27, Paper No. 20169049.
2.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2014
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.
3.
COMSOL
,
2015
, “
COMSOL Multiphysics ver. 5.1
,” COMSOL, Inc., Burlington, MA.
4.
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Recent Advances in Vapor Chamber Transport Characterization for High-Heat-Flux Applications
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
Y. I.
Cho
,
J. P.
Abraham
, and
J. M.
Gorma
, eds.,
Elsevier
,
San Diego, CA
, pp.
209
301
.
5.
Palko
,
J. W.
,
Zhang
,
C.
,
Wilbur
,
J. D.
,
Dusseault
,
T. J.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Santiago
,
J. G.
,
2015
, “
Approaching the Limits of Two-Phase Boiling Heat Transfer: High Heat Flux and Low Superheat
,”
Appl. Phys. Lett.
,
107
(
25
), p.
253903
.
6.
Nam
,
Y.
,
Sharratt
,
S.
,
Cha
,
G.
, and
Ju
,
Y. S.
,
2011
, “
Characterization and Modeling of the Heat Transfer Performance of Nanostructured Cu Micropost Wicks
,”
ASME J. Heat Transfer
,
133
(
10
), p.
101502
.
7.
Ćoso
,
D.
,
Srinivasan
,
V.
,
Lu
,
M.-C.
,
Chang
,
J.-Y.
, and
Majumdar
,
A.
,
2012
, “
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101501
.
8.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4204
4215
.
9.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5113
5121
.
10.
Hwang
,
G. S.
,
Fleming
,
E.
,
Carne
,
B.
,
Sharratt
,
S.
,
Nam
,
Y.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2011
, “
Multi-Artery Heat-Pipe Spreader: Lateral Liquid Supply
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2334
2340
.
11.
Ju
,
Y. S.
,
Kaviany
,
M.
,
Nam
,
Y.
,
Sharrat
,
S.
,
Hwang
,
G. S.
,
Catton
,
I.
,
Fleming
,
E.
, and
Dussinger
,
P.
,
2013
, “
Planar Vapor Chamber With Hybrid Evaporator Wicks for the Thermal Management of High-Heat-Flux and High-Power Optoelectronic Devices
,”
Int. J. Heat Mass Transfer
,
60
, pp.
163
169
.
12.
Tanya
,
L.
,
Lingamneni
,
S.
,
Palko
,
J.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Optimization of Hybrid Wick Structures for Extreme Spreading in High Performance Vapor Chambers
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp. 30–36.
13.
Semenic
,
T.
,
Lin
,
Y. Y.
,
Catton
,
I.
, and
Sarraf
,
D. B.
,
2008
, “
Use of Biporous Wicks to Remove High Heat Fluxes
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
278
283
.
14.
Reilly
,
S. W.
, and
Catton
,
I.
,
2014
, “
Utilization of Pore-Size Distributions to Predict Thermophysical Properties and Performance of Biporous Wick Evaporators
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061501
.
15.
Wang
,
J.-C.
,
2011
, “
Thermal Investigations on LED Vapor Chamber-Based Plates
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1206
1212
.
16.
Huang
,
X.
, and
Franchi
,
G.
,
2008
, “
Design and Fabrication of Hybrid bi-Modal Wick Structure for Heat Pipe Application
,”
J. Porous Mater.
,
15
(
6
), pp.
635
642
.
17.
Ming
,
Z.
,
Zhongliang
,
L.
, and
Guoyuan
,
M.
,
2009
, “
The Experimental and Numerical Investigation of a Grooved Vapor Chamber
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
422
430
.
18.
Weibel
,
J. A.
,
Kim
,
S. S.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2012
, “
Experimental Characterization of Capillary-Fed Carbon Nanotube Vapor Chamber Wicks
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021501
.
19.
Mesoscribe
,
2019
, “
Mesoscribe Printed Heater
,” Mesoscribe, Central Islip, NY, May 23, 2019, http://www.mesoscribe.com/products/printed-heaters/
20.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111702
.
21.
Altman
,
D. H.
,
Wasniewski
,
J. R.
,
North
,
M. T.
,
Kim
,
S. S.
, and
Fisher
,
T. S.
,
2011
, “
Development of Micro/Nano Engineered Wick-Based Passive Heat Spreaders for Thermal Management of High Power Electronic Devices
,”
ASME
Paper No. IPACK2011-52122.
22.
Weibel
,
J. A.
,
Kousalya
,
A. S.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2012
, “
Characterization and Nanostructured Enhancement of Boiling Incipience in Capillary-Fed, Ultra-Thin Sintered Powder Wicks
,”
13th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30-June 1, pp. 119–129.
23.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
24.
Sudhakar
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
An Area-Scalable Two-Layer Evaporator Wick Concept for High-Heat-Flux Vapor Chambers
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp. 537–546.
You do not currently have access to this content.