We show numerically the phase change material Ge3Sb2Te6 (GST) with special configuration as a heat modulator in the regime of near-field radiative heat transfer (NFRHT). The ability of GST to allow ultrafast reversible switch between two phases endows it great potential in practical modulation application. By designing silicon carbide (SiC) nanoholes (NHs) filled with GST, this configuration could achieve a considerable modulation effect and large near-field radiative heat flux. The underlying mechanism can be explained by the observation that the entire configuration supports either hyperbolic modes or surface phonon polaritons (SPhPs) resonance modes and even the combination of both modes, thereby resulting in the remarkable modulation effect. In addition, the effects of the volume filling factor and graphene coverage are also investigated at the vacuum gap distance of 100 nm. With graphene coverage, the modulation factor can be further improved to as high as 0.72 achieved at the volume filling factor of 0.6 with temperature difference of 20 K. The proposed configuration has the potential to effectively modulate heat in the near-field regime for designing heat modulation applications in the future.

References

References
1.
Shrader
,
T. M.
,
1937
, “
Heat Regulator
,” U.S. Patent No. 50831.
2.
Li
,
B.
,
Wang
,
L.
, and
Casati
,
G.
,
2004
, “
Thermal Diode: Rectification of Heat Flux
,”
Phys. Rev. Lett.
,
93
(
18
), p.
184301
.
3.
Terraneo
,
M.
,
Peyrard
,
M.
, and
Casati
,
G.
,
2002
, “
Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier
,”
Phys. Rev. Lett.
,
88
(
9
), pp.
289
295
.
4.
Li
,
B.
,
Wang
,
L.
, and
Casati
,
G.
,
2006
, “
Negative Differential Thermal Resistance and Thermal Transistor
,”
Appl. Phys. Lett.
,
88
(
14
), p.
230
.
5.
Li
,
N.
,
Ren
,
J.
,
Wang
,
L.
,
Zhang
,
G.
,
Hänggi
,
P.
, and
Li
,
B.
,
2012
, “
Colloquium: Phononics: Manipulating Heat Flow with Electronic Analogs and Beyond
,”
Rev. Mod. Phys.
,
84
(
3
), p.
1045
.
6.
Ben-Abdallah
,
P.
, and
Biehs
,
S. A.
,
2014
, “
Near-Field Thermal Transistor
,”
Phys. Rev. Lett.
,
112
(
4
), p.
044301
.
7.
Ito
,
K.
,
Nishikawa
,
K.
,
Iizuka
,
H.
, and
Toshiyoshi
,
H.
,
2014
, “
Experimental Investigation of Radiative Thermal Rectifier Using Vanadium Dioxide
,”
Appl. Phys. Lett.
,
105
(
25
), p.
253503
.
8.
Chang
,
C. W.
,
Okawa
,
D.
,
Majumdar
,
A.
, and
Zettl
,
A.
,
2006
, “
Solid-State Thermal Rectifier
,”
Science
,
314
(
5802
), pp.
1121
1124
.
9.
Zhu
,
J.
,
Hippalgaonkar
,
K.
,
Shen
,
S.
,
Wang
,
K.
,
Abate
,
Y.
,
Lee
,
S.
,
Wu
,
J.
,
Yin
,
X.
,
Majumdar
,
A.
, and
Zhang
,
X.
,
2014
, “
Temperature-Gated Thermal Rectifier for Active Heat Flow Control
,”
Nano Lett.
,
14
(
8
), pp.
4867
4872
.
10.
Otey
,
C. R.
,
Lau
,
W. T.
, and
Fan
,
S.
,
2010
, “
Thermal Rectification Through Vacuum
,”
Phys. Rev. Lett.
,
104
(
15
), p.
154301
.
11.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.
12.
Ilic
,
O.
,
Jablan
,
M.
,
Joannopoulos
,
J. D.
,
Celanovic
,
I.
,
Buljan
,
H.
, and
Soljačić
,
M.
,
2012
, “
Near-Field Thermal Radiation Transfer Controlled by Plasmons in Graphene
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
85
(
15
), pp.
5299
5303
.
13.
Lee
,
B. J.
,
Lim
,
M.
, and
Lee
,
S. S.
,
2013
, “
Near-Field Thermal Radiation Between Graphene-Covered Doped Silicon Plates
,”
Opt. Express
,
21
(
19
), pp.
22173
22185
.
14.
Basu
,
S.
, and
Francoeur
,
M.
,
2011
, “
Near-Field Radiative Transfer Based Thermal Rectification Using Doped Silicon
,”
Appl. Phys. Lett.
,
98
(
11
), p.
184301
.
15.
Cui
,
L.
,
Huang
,
Y.
,
Wang
,
J.
, and
Zhu
,
K. Y.
,
2013
, “
Ultrafast Modulation of Near-Field Heat Transfer With Tunable Metamaterials
,”
Appl. Phys. Lett.
,
102
(
5
), p.
3303
.
16.
Yang
,
Y.
,
Basu
,
S.
, and
Wang
,
L.
,
2015
, “
Vacuum Thermal Switch Made of Phase Transition Materials Considering Thin Film and Substrate Effects
,”
J. Quant. Spectrosc. Radiat. Transfer
,
158
, pp.
69
77
.
17.
Zwol
,
P. J. V.
,
Joulain
,
K.
,
Ben-Abdallah
,
P.
, and
Chevrier
,
J.
,
2011
, “
Phonon Polaritons Enhance Near-Field Thermal Transfer Across the Phase Transition of VO2
,”
Phys. Rev. B
,
84
(
16
), p.
161413
.
18.
Van Zwol
,
P. J.
,
Joulain
,
K.
,
Ben Abdallah
,
P.
,
Greffet
,
J. J.
, and
Chevrier
,
J.
,
2015
, “
Fast Nanoscale Heat-Flux Modulation With Phase-Change Materials
,”
Phys. Rev. B
,
83
(
20
), p.
201404
.
19.
Ghanekar
,
A.
,
Ji
,
J.
, and
Zheng
,
Y.
,
2016
, “
High-Rectification Near-Field Thermal Diode Using Phase Change Periodic Nanostructure
,”
Appl. Phys. Lett.
,
109
(
12
), p.
123106
.
20.
Barker
,
A. S.
, Jr.
,
Verleur
,
H. W.
, and
Guggenheim
,
H. J.
,
1966
, “
Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature
,”
Phys. Rev. Lett.
,
17
(
26
), pp.
1286
1289
.
21.
Michel
,
A. K. U.
,
Zalden
,
P.
,
Chigrin
,
D. N.
,
Wuttig
,
M.
,
Lindenberg
,
A. M.
, and
Taubner
,
T.
,
2014
, “
Reversible Optical Switching of Infrared Antenna Resonances With Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses
,”
ACS Photonics
,
1
(
9
), pp.
833
839
.
22.
Li
,
P.
,
Yang
,
X.
,
Maß
,
T. W.
,
Hanss
,
J.
,
Lewin
,
M.
,
Michel
,
A. U.
,
Wuttig
,
M.
, and
Taubner
,
T.
,
2016
, “
Reversible Optical Switching of Highly Confined Phonon-Polaritons With an Ultrathin Phase-Change Material
,”
Nat. Mater.
,
14
(
15
), p.
1450
.
23.
Shportko
,
K.
,
Kremers
,
S.
,
Woda
,
M.
,
Lencer
,
D.
,
Robertson
,
J.
, and
Wuttig
,
M.
,
2008
, “
Resonant Bonding in Crystalline Phase-Change Materials
,”
Nat. Mater.
,
7
(
8
), pp.
653
658
.
24.
Michel
,
A. K.
,
Chigrin
,
D. N.
,
Maß
,
T. W.
,
Schönauer
,
K.
,
Salinga
,
M.
,
Wuttig
,
M.
, and
Taubner
,
T.
,
2013
, “
Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning
,”
Nano Lett.
,
13
(
8
), p.
3470
.
25.
Loke
,
D.
,
Lee
,
T.
,
Wang
,
W.
,
Shi
,
L.
,
Zhao
,
R.
,
Yeo
,
Y.
,
Chong
,
T.
, and
Elliott
,
S.
,
2012
, “
Breaking the Speed Limits of Phase-Change Memory
,”
Science
,
336
(
6088
), pp.
1566
1569
.
26.
Cortes
,
C. L.
,
Newman
,
W.
,
Molesky
,
S.
, and
Jacob
,
Z.
,
2012
, “
Quantum Nanophotonics Using Hyperbolic Metamaterials
,”
J. Opt.
,
14
(
6
), pp.
1013
1020
.
27.
Xie
,
R.
,
Bui
,
C. T.
,
Varghese
,
B.
,
Zhang
,
Q.
,
Sow
,
C. H.
,
Li
,
B.
, and
Thong
,
J. T.
,
2011
, “
An Electrically Tuned Solid‐State Thermal Memory Based on Metal–Insulator Transition of Single-Crystalline VO2 Nanobeams
,”
Adv. Funct. Mater.
,
21
(
9
), pp.
1602
1607
.
28.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2014
, “
Near-Field Radiative Heat Transfer With Doped-Silicon Nanostructured Metamaterials
,”
Int. J. Heat Mass Transfer
,
73
, pp.
389
398
.
29.
Zhou
,
K.
,
Cheng
,
Q.
,
Song
,
J.
,
Lu
,
L.
,
Jia
,
Z.
, and
Li
,
J.
,
2018
, “
Broadband Perfect Infrared Absorption by Tuning Epsilon-Near-Zero and Epsilon-Near-Pole Resonances of Multilayer ITO Nanowires
,”
Appl. Opt.
,
57
(
1
), pp.
102
111
.
30.
Choy
,
T. C.
,
2015
,
Effective Medium Theory: Principles and Applications
,
Oxford University Press
,
Oxford, UK
.
31.
Wang
,
H.
,
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Anisotropic Optical Properties of Silicon Nanowire Arrays Based on the Effective Medium Approximation
,”
Int. J. Therm. Sci.
,
65
(
6
), pp.
62
69
.
32.
Liu
,
X.
,
Bright
,
T.
, and
Zhang
,
Z.
,
2014
, “
Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials
,”
ASME J. Heat Transfer
,
136
(
9
), p.
092703
.
33.
Gall
,
J. L.
,
Olivier
,
M.
, and
Greffet
,
J. J.
,
1997
, “
Experimental and Theoretical Study of Reflection and Coherent Thermal Emission by a SiC Grating Supporting a Surface-Phonon Polariton
,”
Phys. Rev. B
,
55
(
15
), pp.
10105
10114
.
34.
Hu
,
L.
, and
Chui
,
S. T.
,
2002
, “
Characteristics of Electromagnetic Wave Propagation in Uniaxially Anisotropic Left-Handed Materials
,”
Phys. Rev. B
,
66
(
8
), pp.
429
436
.
35.
Song
,
J.
,
Lu
,
L.
,
Cheng
,
Q.
, and
Luo
,
Z.
,
2018
, “
Three-Body Heat Transfer Between Anisotropic Magneto-Dielectric Hyperbolic Metamaterials
,”
ASME J. Heat Transfer
,
140
(
8
), p.
082005
.
36.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
,
2007
, “
Near-Field Radiative Heat Transfer and Noncontact Friction
,”
Rev. Mod. Phys.
,
79
(
4
), pp.
1291
1329
.
37.
Biehs
,
S.-A.
,
Tschikin
,
M.
, and
Ben-Abdallah
,
P.
,
2012
, “
Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field
,”
Phys. Rev. Lett.
,
109
(
10
), p.
104301
.
38.
Fu
,
C. J.
, and
Zhang
,
Z. M.
,
2006
, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
,
49
(
9
), pp.
1703
1718
.
39.
Biehs
,
S. A.
,
Ben-Abdallah
,
P.
,
Rosa
,
F. S.
,
Joulain
,
K.
, and
Greffet
,
J. J.
,
2011
, “
Nanoscale Heat Flux Between Nanoporous Materials
,”
Opt. Exp.
,
19
(
S5
), p.
A1088
.
40.
Song
,
J.
, and
Cheng
,
Q.
,
2016
, “
Near-Field Radiative Heat Transfer Between Graphene and Anisotropic Magneto-Dielectric Hyperbolic Metamaterials
,”
Phys. Rev. B
,
94
(
12
), p.
125419
.
41.
Zhao
,
B.
, and
Zhang
,
Z.
,
2016
, “
Enhanced Photon Tunneling by Surface Plasmon–Phonon Polaritons in Graphene/hBN Heterostructures
,”
ASME J. Heat Transfer
,
139
(
2
), p.
022701
.
42.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion
,”
Sci. Rep.
,
3
(
3
), p.
1383
.
43.
Liu
,
X.
,
Zhang
,
R. Z.
, and
Zhang
,
Z.
,
2014
, “
Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes
,”
ACS Photonics
,
1
(
9
), pp.
785
789
.
44.
Yang
,
J.
,
Su
,
Y.
,
Fu
,
Y.
,
Gong
,
S.
,
Du
,
W.
,
He
,
S.
, and
Ma
,
Y.
,
2018
, “
Observing of the Super-Planckian Near-Field Thermal Radiation Between Graphene Sheets
,”
Nat commun.
,
9
(
1
), p.
4033
.https://www.nature.com/articles/s41467-018-06163-8
45.
Zhu
,
L.
,
Fiorino
,
A.
,
Thompson
,
D.
,
Mittapally
,
R.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2019
, “
Near-Field Photonic Cooling Through Control of the Chemical Potential of Photons
,”
Nature
,
566
(
7743
), p.
239
.
You do not currently have access to this content.