Mixed convection heat transfer characteristics from heat source located symmetrically inside square enclosure and cooled by Al2O3/water-based nanofluid flow was experimentally investigated. The configuration was subjected to high levels of natural convection and low rates of nanofluid flow. The nanofluid thermophysical properties were characterized using the available correlations in the literatures except the viscosity which was measured and correlated in terms of the nanoparticles loading ratios. Comparative analysis indicated that the application of nanofluid could not guarantee heat transfer enhancement in configurations dominated by natural convection. Exception heat transfer enhancement was only found when very low nanoparticles loading ratio was applied. Instead, heat transfer degradation was found especially in the cases of highest nanoparticles loading ratios. Alternatively, heat transfer enhancement was observed when the forced convection effect was substantial at the highest nanofluid flow rate. The present conclusions were justified and correlated to the findings reported in the literature.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nano-Particles
,”
ASME Developments and Applications of Non-Newtonian Flows
, Vol.
66
,
D. A.
Siginer
and
H. P.
Wang
, eds., American Society of Mechanical Engineers,
New York
, pp.
99
103
.
2.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1997
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
MRS Online Proc.
, 457, pp. 3–11.
3.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Transfer
,
21
(
1
), pp.
58
64
.
4.
Bhattacharya
,
P.
,
Samanta
,
A. N.
, and
Chakraborty
,
S.
,
2009
, “
Numerical Study of Conjugate Heat Transfer Rectangular Microchannel Heat Sink Al2O3-Water Nanofluid
,”
Heat Mass Transfer
,
45
(
10
), pp.
1323
1333
.
5.
Naik
,
M. T.
,
Vojkani
,
E.
, and
Ravi
,
G.
,
2013
, “
Numerical Investigation of Turbulent Flow and Heat Transfer Characteristics of PGW-CuO Nanofluids
,”
Int. J. Min., Metall. Mech. Eng. (IJMMME)
,
1
(
2
), pp.
141
145
.http://www.isaet.org/images/extraimages/P413038.pdf
6.
Reji Kumar
,
R.
,
Sridhar
,
K.
, and
Narasimha
,
M.
,
2013
, “
Heat Transfer Enhancement in Domestic Refrigerator Using R600a/Mineral Oil/Nano-Al2O3 as Working Fluid
,”
Int. J. Comput. Eng. Res.
,
3
(
4
), pp.
42
50
.https://pdfs.semanticscholar.org/4ae6/d7620c03c72b7dc02d1fd874edff39b662f2.pdf
7.
Shelke
,
D. B.
, and
Hole
,
J. A.
,
2013
, “
Heat Transfer Enhancement of Tube in Tube Heat Exchanger Using CuO-Water Nanofluid Under Turbulent Flow
,”
Int. J. Mech. Civ. Automobile Prod. Eng. (VSRD)
,
3
(
3
), pp.
61
70
.http://www.vsrdjournals.com/pdf/VSRDIJMCAPE/2013_3_March/4_DB_Shelke_1546_Research_Article_VSRDIJMCAPE_March_2013.pdf
8.
Bhimani
,
V. L.
,
Rathod
,
P. P.
, and
Sorathiya
,
A. S.
,
2013
, “
Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
6
), pp.
295
302
.https://ijetae.com/files/Volume3Issue6/IJETAE_0613_49.pdf
9.
Rashmi
,
W.
,
Khalid
,
M.
,
Ismail
,
A. F.
,
Saidur
,
R.
, and
Rashid
,
A. K.
,
2015
, “
Experimental and Numerical Investigation of Heat Transfer in CNT Nanofluids
,”
J. Exp. Nanosci.
,
10
(
7
), pp.
545
563
.
10.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Burgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
On Cooling of Electronics With Nanofluid
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051401
.
11.
Sohel
,
M. R.
,
Khaleduzzaman
,
S. S.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Sabri
,
M. F. M.
, and
Mahbubul
,
I. M.
,
2014
, “
An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O2–H2O Nanofluid
,”
Int. J. Heat Mass Transfer
,
74
, pp.
164
172
.
12.
Ningbo
,
Z.
,
Jialong
,
Y.
,
Hui
,
L.
,
Ziyin
,
Z.
, and
Shuying
,
L.
,
2016
, “
Numerical Investigations of Laminar Heat Transfer and Flow Performance of Al2O3-Water Nanofluids in a Flat Tube
,”
Int. J. Heat Mass Transfer
,
92
, pp.
268
382
.
13.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
, pp.
617
623
.
14.
Khorgade
,
R. D.
, and
Shelke
,
R. S.
,
2015
, “
Experimental Study on Improvement of Heat Tran Journalof Advanced Engineering and Global Technology, Vsfer of Minichannel Heat Sink Using Nanofluids
,”
Int. J. Adv. Eng. Global Technol.
,
3
(
6
), pp.
796
806
.http://ijaegt.com/wp-content/uploads/2015/04/409500-pp796-806-rupesh.pdf
15.
Adam
,
A. M.
,
Ghazali
,
N. M.
, and
Ahmed
,
R.
,
2016
, “
Optimization of Nanofluid Cooled Microchannel Heat Sink
,”
Therm. Sci.
,
20
(
1
), pp.
109
118
.
16.
Ben-Cheikh
,
N.
,
Chamkha
,
A. J.
,
Ben-Beya
,
B.
, and
Lili
,
T.
,
2013
, “
Natural Convection of Water-Based Nanofluids in a Square Enclosure With Non-Uniform Heating of the Bottom Wall
,”
J. Mod. Phys.
,
4
(
2
), pp.
147
159
.
17.
Jou
,
R. Y.
, and
Tzeng
,
S. C.
,
2006
, “
Numerical Research of Nature Convective Heat Transfer Enhancement
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
727
736
.
18.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3663
.
19.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
20.
Mahmoodi
,
M.
,
2011
, “
Numerical Simulation of Free Convection of a Nanofluid in L-Shaped Cavities
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1731
1740
.
21.
Öğüt
,
E. B.
,
2009
, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
,
48
, pp.
2063
2073
.
22.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convective of Nanofluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
23.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech. Eng.
, 2010, p. 742739.
24.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
.
25.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
26.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.
27.
Esmaeil
,
K. K.
,
2013
, “
Numerical Feasibility Study of Utilizing Nanofluids in Laminar Natural Convection Inside Enclosures
,”
Heat Mass Transfer
,
49
(
1
), pp.
41
54
.
28.
Esmaeil
,
K. K.
,
2015
, “
Thermophysical Properties-Based Evaluation of Nanofluids Laminar Natural Convection Inside Square Enclosure
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
1
15
.
29.
Kretzschmar
,
H.-J.
,
Herrmann
,
S.
,
Kunick
,
M.
, and
Posselt
,
J.
,
Zittau's Fluid Property Calculator, Water and Steam IAPWS-IF97—LibIF97
,” Goerlitz University of Applied Sciences, Zittau, Germany, accessed May 13, 2019, https://web1.hszg.de/thermo_fpc/index.php
30.
Corcione
,
M.
,
2010
, “
Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1536
1546
.
31.
Akilu
,
S.
,
Sharma
,
K. V.
,
Baheta
,
A. T.
, and
Mamat
,
R.
,
2016
, “
A Review of Thermophysical Properties of Water Based Composite Nanofluids
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
654
678
.
32.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
R.
, and
Said
,
Z.
,
2017
, “
A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
638
670
.
33.
Eggers
,
J. R.
, and
Kabelac
,
S.
,
2016
, “
Nanofluids Revisited
,”
Appl. Therm. Eng.
,
106
, pp.
1114
1126
.
34.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Oxford University Press
,
Cambridge, UK
, pp.
435
441
.
35.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
IEC Fundam.
,
1
, pp.
187
191
.
36.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
.
37.
Hui
,
P. M.
,
Zhang
,
X.
,
Markworth
,
A. J.
, and
Stroud
,
D.
,
1999
, “
Thermal Conductivity of Graded Composites: Numerical Simulations and an Effective Medium Approximation
,”
J. Mater. Sci.
,
34
(
22
), pp.
5497
5503
.
38.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
,
2005
, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2926
2932
.
39.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.
40.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
41.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1015
1031
.
42.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
.
43.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nano-Particles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
44.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
45.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.
46.
Xie
,
H. Q.
,
Wang
,
J. C.
,
Xi
,
T. G.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q. R.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
), pp.
4568
4572
.
47.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective–Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.
48.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
49.
Einstein
,
A.
,
1906
, “
Eine Neue Bestimmung Der Moleku Ldimensionen
,”
Annalen Der Phys.
,
19
, pp.
289
306
.
50.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.
51.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
137
152
.
52.
Nielsen
,
L. E.
,
1970
, “
Generalized Equation for the Elastic Moduli of Composite Materials
,”
J. Appl. Phys.
,
41
(
11
), pp.
4626
4627
.
53.
Lundgren
,
T. S.
,
1972
, “
Slow Flow Through Stationary Random Beds and Suspensions of Spheres
,”
J. Fluid Mech.
,
51
(
2
), pp.
273
299
.
54.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
55.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Bouche
,
S.
, and
Mintsa
,
A. H.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
56.
Vajjha
,
R. S.
,
2008
, “
Measurements of Thermophysical Properties of Nanofluids and Computation of Heat Transfer Characteristics
,” M.Sc. thesis, Mechnical Engineering Department, University of Alaska Fairbanks, Fairbanks, AK.
57.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
.
58.
Venerus
,
D. C.
,
Buongiorno
,
J.
,
Christianson
,
R.
,
Townsend
,
J.
,
Bang
,
I. C.
,
Chen
,
G.
,
Chung
,
S. J.
,
Chyu
,
M.
,
Chen
,
H.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Hong
,
H.
,
Horton
,
M.
,
Hu
,
L.
,
Iorio
,
C. S.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Kabelac
,
S.
,
Kedzierski
,
M. A.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
McKrell
,
T.
,
Ni
,
R.
,
Philip
,
J.
,
Prabhat
,
N.
,
Song
,
P.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Zhao
,
X.-Z.
, and
Zhou
S.-Q.
,
2010
, “
Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Applications
,”
Appl. Rheol.
,
20
(
4
), p.
44582
.
59.
ASTM,
1970
, “
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids
,” American Society of Testing and Material, Washington, DC, Document No. ASTM D445.
60.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
7th ed.
,
Wiley
, Hoboken, NJ.
61.
Sumon
,
S.
,
Goutam
,
S.
,
Mohammad
,
A.
, and
Md. Quamrul
,
I.
,
2006
, “
Combined Free and Forced Convection Inside a Two-Dimensional Multiple Ventilated Rectangular Enclosure
,”
ARPN J. Eng. Appl. Sci.
,
1
(
3
), pp.
23
35
.http://www.arpnjournals.com/jeas/research_papers/rp_2006/jeas_1006_18.pdf
You do not currently have access to this content.