In this study, thermal resistance of a closed-loop oscillating heat pipe (OHP) is investigated using experimental tests and artificial intelligence methods. For this target, γFe2O3 and Fe3O4 nanoparticles are mixed with the base fluid. Also, intelligent models are developed to predict the thermal resistance of the OHP. These models are developed based on the heat input into evaporator section, the thermal conductivity of working fluids, and the ratio of the inner diameter to length of OHP. The intelligent methods are multilayer feed-forward neural network (MLFFNN), adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) type neural network. Thermal resistance of the heat pipe (as a measure of thermal performance) is considered as the target. The results showed that using the nanofluids as working fluid in the OHP decreased the thermal resistance, where this decrease for Fe3O4/water nanofluid was more than that of γFe2O3/water. The intelligent models also predicted successfully the thermal resistance of OHP with a correlation coefficient close to 1. The root-mean-square error (RMSE) for MLFFNN, ANFIS, and GMDH models was obtained as 0.0508, 0.0556, and 0.0569 (°C/W) (for the test data), respectively.

References

References
1.
Ando
,
M.
,
Okamoto
,
A.
,
Tanaka
,
K.
,
Maeda
,
M.
,
Sugita
,
H.
,
Daimaru
,
T.
, and
Nagai
,
H.
,
2018
, “
On-Orbit Demonstration of Oscillating Heat Pipe With Check Valves for Space Application
,”
Appl. Therm. Eng.
,
130
, pp.
552
560
.
2.
Khosravi
,
A.
,
Koury
,
R. N. N.
, and
Machado
,
L.
,
2018
, “
Thermo-Economic Analysis and Sizing of the Components of an Ejector Expansion Refrigeration System
,”
Int. J. Refrig.
,
86
, pp.
463
479
.
3.
Monroe
,
J. G.
,
Ibrahim
,
O. T.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2018
, “
Energy Harvesting Via Fluidic Agitation of a Magnet Within an Oscillating Heat Pipe
,”
Appl. Therm. Eng.
,
129
, pp.
884
892
.
4.
Xian
,
H.
,
Xu
,
W.
,
Zhang
,
Y.
,
Du
,
X.
, and
Yang
,
Y.
,
2015
, “
Experimental Investigations of Dynamic Fluid Flow in Oscillating Heat Pipe Under Pulse Heating
,”
Appl. Therm. Eng.
,
88
, pp.
376
383
.
5.
Alawi
,
O. A.
,
Sidik
,
N. A. C.
,
Mohammed
,
H. A.
, and
Syahrullail
,
S.
,
2014
, “
Fluid Flow and Heat Transfer Characteristics of Nanofluids in Heat Pipes: A Review
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
50
62
.
6.
Goshayeshi
,
H. R.
,
Goodarzi
,
M.
, and
Dahari
,
M.
,
2015
, “
Effect of Magnetic Field on the Heat Transfer Rate of Kerosene/Fe2O3 Nanofluid in a Copper Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
663
668
.
7.
Shen
,
H.
,
Zhang
,
Y.
,
Wang
,
C.-C.
, and
Xie
,
G.
,
2018
, “
Comparative Study for Convective Heat Transfer of Counter-Flow Wavy Double-Layer Microchannel Heat Sinks in Staggered Arrangement
,”
Appl. Therm. Eng.
,
137
, pp.
228
237
.
8.
Liu
,
Z.-H.
, and
Li
,
Y.-Y.
,
2012
, “
A New Frontier of Nanofluid Research—Application of Nanofluids in Heat Pipes
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6786
6797
.
9.
Zhao
,
J.
,
Jiang
,
W.
, and
Rao
,
Z.
,
2018
, “
Operational Characteristics of Oscillating Heat Pipe With Long Heat Transport Distance for Solar Energy Application
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
137
145
.
10.
Mangini
,
D.
,
Marengo
,
M.
,
Araneo
,
L.
,
Mameli
,
M.
,
Fioriti
,
D.
, and
Filippeschi
,
S.
,
2018
, “
Infrared Analysis of the Two Phase Flow in a Single Closed Loop Pulsating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
304
312
.
11.
Mahdavi
,
M.
,
Tiari
,
S.
,
De Schampheleire
,
S.
, and
Qiu
,
S.
,
2018
, “
Experimental Study of the Thermal Characteristics of a Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
292
304
.
12.
Gupta
,
N. K.
,
Tiwari
,
A. K.
, and
Ghosh
,
S. K.
,
2018
, “
Heat Transfer Mechanisms in Heat Pipes Using Nanofluids—A Review
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
84
100
.
13.
Qu
,
J.
,
Li
,
X.
,
Wang
,
Q.
,
Liu
,
F.
, and
Guo
,
H.
,
2017
, “
Heat Transfer Characteristics of Micro-Grooved Oscillating Heat Pipes
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
75
84
.
14.
Monroe
,
J. G.
,
Aspin
,
Z. S.
,
Fairley
,
J. D.
, and
Thompson
,
S. M.
,
2017
, “
Analysis and Comparison of Internal and External Temperature Measurements of a Tubular Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
165
178
.
15.
Patil
,
J. D.
, and
Gawali
,
B. S.
,
2017
, “
Experimental Investigation of Heat Transfer Enhancement Factors in the Oscillating Flow Heat Exchanger Using Kurzweg's and Nishio's Correlations
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
37
46
.
16.
Sun
,
Q.
,
Qu
,
J.
,
Li
,
X.
, and
Yuan
,
J.
,
2017
, “
Experimental Investigation of Thermo-Hydrodynamic Behavior in a Closed Loop Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
450
458
.
17.
Cui
,
X.
,
Qiu
,
Z.
,
Weng
,
J.
, and
Li
,
Z.
,
2016
, “
Heat Transfer Performance of Closed Loop Pulsating Heat Pipes With Methanol-Based Binary Mixtures
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
253
263
.
18.
Goshayeshi
,
H. R.
,
Goodarzi
,
M.
,
Safaei
,
M. R.
, and
Dahari
,
M.
,
2016
, “
Experimental Study on the Effect of Inclination Angle on Heat Transfer Enhancement of a Ferrofluid in a Closed Loop Oscillating Heat Pipe Under Magnetic Field
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
265
270
.
19.
Ji
,
Y.
,
Xu
,
C.
,
Ma
,
H.
, and
Xinxiang
,
P.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Transfer
,
135
(
7
), p.
074504
.
20.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
, and
Zhao
,
Y.
,
2014
, “
Effects of Superhydrophobic and Superhydrophilic Surfaces on Heat Transfer and Oscillating Motion of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
8
), p.
082001
.
21.
Zhao
,
N.
,
Fu
,
B.
,
Ma
,
H.
, and
Su
,
F.
,
2015
, “
Ultrasonic Effect on Heat Transfer Performance of Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091014
.
22.
Zhang
,
F. Z.
,
Winholtz
,
R. A.
,
Black
,
W. J.
,
Wilson
,
M. R.
,
Taub
,
H.
, and
Ma
,
H. B.
,
2016
, “
Effect of Hydrophilic Nanostructured Cupric Oxide Surfaces on the Heat Transport Capability of a Flat-Plate Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
138
(
6
), p.
062901
.
23.
Iwata
,
N.
,
Ogawa
,
H.
, and
Miyazaki
,
Y.
,
2016
, “
Maximum Heat Transfer and Operating Temperature of Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122002
.
24.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1954
1962
.
25.
Zhou
,
Y.
,
Cui
,
X.
,
Weng
,
J.
,
Shi
,
S.
,
Han
,
H.
, and
Chen
,
C.
,
2018
, “
Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Graphene Nanofluids
,”
Powder Technol.
,
332
, pp.
371
380
.
26.
Su
,
X.
,
Zhang
,
M.
,
Han
,
W.
, and
Guo
,
X.
,
2015
, “
Enhancement of Heat Transport in Oscillating Heat Pipe With Ternary Fluid
,”
Int. J. Heat Mass Transfer
,
87
, pp.
258
264
.
27.
Ji
,
Y.
,
Liu
,
G.
,
Ma
,
H.
,
Li
,
G.
, and
Sun
,
Y.
,
2013
, “
An Experimental Investigation of Heat Transfer Performance in a Polydimethylsiloxane (PDMS) Oscillating Heat Pipe
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
690
697
.
28.
Karthikeyan
,
V. K.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Brusly Solomon
,
A.
,
2014
, “
Effect of Nanofluids on Thermal Performance of Closed Loop Pulsating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
171
178
.
29.
Kang
,
S.-W.
,
Wang
,
Y.-C.
,
Liu
,
Y.-C.
, and
Lo
,
H.-M.
,
2017
, “
Visualization and Thermal Resistance Measurements for a Magnetic Nanofluid Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
126
, pp.
1044
1050
.
30.
Chiang
,
Y.-C.
,
Kuo
,
W.-C.
,
Ho
,
C.-C.
, and
Chieh
,
J.-J.
,
2014
, “
Experimental Study on Thermal Performances of Heat Pipes for Air-Conditioning Systems Influenced by Magnetic Nanofluids, External Fields, and Micro Wicks
,”
Int. J. Refrig.
,
43
, pp.
62
70
.
31.
Goshayeshi
,
H. R.
, and
Chaer
,
I.
,
2016
, “
Experimental Study and Flow Visualization of Fe2O3/Kerosene in Glass Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
103
, pp.
1213
1218
.
32.
Taslimifar
,
M.
,
Mohammadi
,
M.
,
Afshin
,
H.
,
Saidi
,
M. H.
, and
Shafii
,
M. B.
,
2013
, “
Overall Thermal Performance of Ferrofluidic Open Loop Pulsating Heat Pipes: An Experimental Approach
,”
Int. J. Therm. Sci.
,
65
, pp.
234
241
.
33.
Khosravi
,
A.
,
Machado
,
L.
, and
Nunes
,
R. O.
,
2018
, “
Time-Series Prediction of Wind Speed Using Machine Learning Algorithms: A Case Study Osorio Wind Farm, Brazil
,”
Appl. Energy
,
224
(
C
), pp.
550
566
.
34.
Khosravi
,
A.
,
Koury
,
R. N. N. N. N.
,
Machado
,
L.
, and
Pabon
,
J. J. G. J. G.
,
2018
, “
Prediction of Wind Speed and Wind Direction Using Artificial Neural Network, Support Vector Regression and Adaptive Neuro-Fuzzy Inference System
,”
Sustain. Energy Technol. Assess.
,
25
, pp.
146
160
.
35.
Khosravi
,
A.
,
Pabon
,
J. J. G. J. G.
,
Koury
,
R. N. N. N. N.
, and
Machado
,
L.
,
2018
, “
Using Machine Learning Algorithms to Predict the Pressure Drop During Evaporation of R407C
,”
Appl. Therm. Eng.
,
133
(
C
), pp.
361
370
.
36.
Naphon
,
P.
,
Wiriyasart
,
S.
, and
Arisariyawong
,
T.
,
2018
, “
Artificial Neural Network Analysis the Pulsating Nusselt Number and Friction Factor of TiO2/Water Nanofluids in the Spirally Coiled Tube With Magnetic Field
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1152
1159
.
37.
Sheikholeslami
,
M.
,
Bani Sheykholeslami
,
F.
,
Khoshhal
,
S.
,
Mola-Abasia
,
H.
,
Ganji
,
D. D.
, and
Rokni
,
H. B.
,
2014
, “
Effect of Magnetic Field on Cu–Water Nanofluid Heat Transfer Using GMDH-Type Neural Network
,”
Neural Comput. Appl.
,
25
(
1
), pp.
171
178
.
38.
Azizi
,
S.
, and
Ahmadloo
,
E.
,
2016
, “
Prediction of Heat Transfer Coefficient During Condensation of R134a in Inclined Tubes Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
106
, pp.
203
210
.
39.
Pierantozzi
,
M.
, and
Petrucci
,
G.
,
2018
, “
Modeling Thermal Conductivity in Refrigerants Through Neural Networks
,”
Fluid Phase Equilib.
,
460
, pp.
36
44
.
40.
Malekan
,
M.
, and
Khosravi
,
A.
,
2018
, “
Investigation of Convective Heat Transfer of Ferrofluid Using CFD Simulation and Adaptive Neuro-Fuzzy Inference System Optimized With Particle Swarm Optimization Algorithm
,”
Powder Technol.
,
333
, pp.
364
376
.
41.
Goshayeshi
,
H. R.
,
Izadi
,
F.
, and
Bashirnezhad
,
K.
,
2017
, “
Comparison of Heat Transfer Performance on Closed Pulsating Heat Pipe for Fe3O4 and γFe2O3 for Achieving an Empirical Correlation
,”
Phys. E
,
89
, pp.
43
49
.
42.
Goshayeshi
,
H. R.
,
Khosravi
,
A.
, and
Karizaki
,
M. A.
,
2013
, “
Experimental Investigation on Nanofluids Effectiveness on Heat Transfer in Oscillating Heat Pipe
,”
Adv. Mater. Res.
,
856
, pp.
98
102
.
43.
Han
,
X.
,
Wang
,
X.
,
Zheng
,
H.
,
Xu
,
X.
, and
Chen
,
G.
,
2016
, “
Review of the Development of Pulsating Heat Pipe for Heat Dissipation
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
692
709
.
44.
Khosravi
,
A.
,
Koury
,
R. N. N. N. N.
,
Machado
,
L.
, and
Pabon
,
J. J. G. J. G.
,
2018
, “
Prediction of Hourly Solar Radiation in Abu Musa Island Using Machine Learning Algorithms
,”
J. Clean. Prod.
,
176
(
C
), pp.
63
75
.
45.
Ivakhnenko
,
A.
,
1971
, “
Polynomial Theory of Complex Systems
,”
IEEE Trans. Syst. Man. Cybern.
,
1
(
4
), pp.
364
378
.
46.
Khosravi
,
A.
,
Machado
,
L.
, and
Nunes
,
R. O.
,
2018
, “
Estimation of Density and Compressibility Factor of Natural Gas Using Artificial Intelligence Approach
,”
J. Pet. Sci. Eng.
,
168
(
C
), pp.
201
216
.
47.
Besarati
,
S. M.
,
Myers
,
P. D.
,
Covey
,
D. C.
, and
Jamali
,
A.
,
2015
, “
Modeling Friction Factor in Pipeline Flow Using a GMDH-Type Neural Network
,”
Cogent Eng.
,
2
(
1
), pp.
1
14
.
48.
Jamshidi
,
H.
,
Arabnejad
,
S.
,
Shafii
,
M. B.
,
Saboohi
,
Y.
, and
Rasoulian
,
R.
,
2009
, “
Experimental Investigation of Closed Loop Pulsating Heat Pipe With Nanofluids
,”
ASME
Paper No. HT2009-88381.
49.
Mohammadi
,
M.
,
Mohammadi
,
M.
, and
Shafii
,
M. B.
,
2011
, “
Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid)
,”
ASME J. Heat Transfer
,
134
(
1
), p.
014503
.
50.
Mohammadi
,
M.
,
Mohammadi
,
M.
,
Ghahremani
,
A. R.
,
Shafii
,
M. B.
, and
Mohammadi
,
N.
,
2014
, “
Experimental Investigation of Thermal Resistance of a Ferrofluidic Closed-Loop Pulsating Heat Pipe
,”
Heat Transfer Eng.
,
35
(
1
), pp.
25
33
.
51.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2009
, “
Performance Characteristics of Pulsating Heat Pipes as Integral Thermal Spreaders
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
815
824
.
You do not currently have access to this content.