Toward accelerated latent heat storage, the unconstrained melting heat transfer in spherical capsules was revisited experimentally in the presence of nano-enhanced phase-change materials (NePCMs), with an emphasis on the influence of capsule size on the rates of melting, heat transfer, and latent heat storage. It was shown that increasing the size of the spherical capsule leads to two competing effects, i.e., thicker molten layer in the close-contact melting (CCM) region and stronger natural convection. However, the NePCM with a high loading (3 wt % graphite nanoplatelets (GNPs)) is not preferred for all capsule sizes as a result of the significantly deteriorated heat transfer in both CCM and natural convection, because the dramatic viscosity growth at such a high loading leads to increased thermal resistance across the molten layer and loss of natural convection that overweigh the increased thermal conductivity. The 1 wt % NePCM sample was exhibited to be able to facilitate latent heat storage for two cases, i.e., in the smallest capsule having a radius of 14.92 mm at a higher wall superheat of 30 °C and in the intermedium 24.85 mm capsule at a lower wall superheat of only 10 °C. It was suggested that a relatively low loading of a specific NePCM can cause a faster rate of latent heat storage over the baseline case of the matrix phase-change material (PCM), if the capsule size (and the wall superheat) can be adjusted properly to regulate the molten layer thickness and the intensity of natural convection.

References

References
1.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.
2.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9-10
), pp.
1597
1615
.
3.
Dhaidan
,
N. S.
, and
Khodadadi
,
J. M.
,
2015
, “
Melting and Convection of Phase Change Materials in Different Shape Containers: A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
449
477
.
4.
Peng
,
H.
,
Dong
,
H.
, and
Ling
,
X.
,
2014
, “
Thermal Investigation of PCM-Based High Temperature Thermal Energy Storage in Packed Bed
,”
Energy Convers. Manage.
,
81
, pp.
420
427
.
5.
Eames
,
I. W.
, and
Adref
,
K. T.
,
2002
, “
Freezing and Melting of Water in Spherical Enclosures of the Type Used in Thermal (Ice) Storage Systems
,”
Appl. Therm. Eng.
,
22
(
7
), pp.
733
745
.
6.
Tan
,
F. L.
,
2008
, “
Constrained and Unconstrained Melting Inside a Sphere
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
466
475
.
7.
Khodadadi
,
J. M.
, and
Zhang
,
Y.
,
2001
, “
Effects of Buoyancy-Driven Convection on Melting Within Spherical Containers
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1605
1618
.
8.
Tan
,
F. L.
,
Hosseinizadeh
,
S. F.
,
Khodadadi
,
J. M.
, and
Fan
,
L. W.
,
2009
, “
Experimental and Computational Study of Constrained Melting of Phase Change Materials (PCM) Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
52
(
15-16
), pp.
3464
3472
.
9.
Roy
,
S. K.
, and
Sengupta
,
S.
,
1987
, “
The Melting Process Within Spherical Enclosures
,”
ASME J. Heat Transfer
,
109
(
2
), pp.
460
462
.
10.
Bahrami
,
P. A.
, and
Wang
,
T. G.
,
1987
, “
Analysis of Gravity and Conduction Driven Melting in a Sphere
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
806
809
.
11.
Kim
,
H. S.
,
Kim
,
C. J.
, and
Ro
,
S. T.
,
1996
, “
Heat Transfer Correlation for Natural Convection in a Meniscus-Shaped Cavity and Its Application to Contact Melting Process
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2267
2270
.
12.
Roy
,
S. K.
, and
Sengupta
,
S.
,
1990
, “
Gravity-Assisted Melting in a Spherical Enclosure: Effects of Natural Convection
,”
Int. J. Heat Mass Transfer
,
33
(
6
), pp.
1135
1147
.
13.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
(
9-10
), pp.
1790
1804
.
14.
Hosseinizadeh
,
S. F.
,
Darzi
,
A. A. R.
,
Tan
,
F. L.
, and
Khodadadi
,
J. M.
,
2013
, “
Unconstrained Melting Inside a Sphere
,”
Int. J. Therm. Sci.
,
63
, pp.
55
64
.
15.
Rizan
,
M. Z. M.
,
Tan
,
F. L.
, and
Tso
,
C. P.
,
2012
, “
An Experimental Study of N-Octadecane Melting Inside a Sphere Subjected to Constant Heat Rate at Surface
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1624
1630
.
16.
Archibold
,
A. R.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2015
, “
The Effects of Radiative Heat Transfer During the Melting Process of a High Temperature Phase Change Material Confined in a Spherical Shell
,”
Appl. Energy
,
138
(
15
), pp.
675
684
.
17.
Archibold
,
A. R.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Analysis of Heat Transfer and Fluid Flow During Melting Inside a Spherical Container for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
64
(
1-2
), pp.
396
407
.
18.
Khodadadi
,
J. M.
,
Fan
,
L.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.
19.
Dhaidan
,
N. S.
,
2017
, “
Nanostructures Assisted Melting of Phase Change Materials in Various Cavities
,”
Appl. Therm. Eng.
,
111
, pp.
193
212
.
20.
Hosseinizadeh
,
S. F.
,
Rabienataj
,
D. A. A.
, and
Tan
,
F. L.
,
2012
, “
Numerical Investigations of Unconstrained Melting of Nano-Enhanced Phase Change Material (NEPCM) Inside a Spherical Container
,”
Int. J. Therm. Sci.
,
51
, pp.
77
83
.
21.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Liu
,
M. J.
,
Xu
,
C. L.
,
Zeng
,
Y.
,
Lu
,
H.
, and
Yu
,
Z. T.
,
2016
, “
Heat Transfer During Constrained Melting of Nano-Enhanced Phase-Change Materials in a Spherical Capsule: An Experimental Study
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122402
.
22.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2013
, “
An Experimental Study on Melting Heat Transfer of Paraffin Dispersed With Al2O3 Nanoparticles in a Vertical Enclosure
,”
Int. J. Heat Mass Transfer
,
62
, pp.
2
8
.
23.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Ding
,
Q.
, and
Liu
,
M. J.
,
2016
, “
Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1057
1069
.
24.
Chandrasekaran
,
P.
,
Cheralathan
,
M.
, and
Velraj
,
R.
,
2015
, “
Influence of the Size of Spherical Capsule on Solidification Characteristics of DI (Deionized Water) Water for a Cool Thermal Energy Storage System—An Experimental Study
,”
Energy
,
90
, pp.
807
813
.
25.
Rahman
,
M. M.
,
Hu
,
H.
,
Shabgard
,
H.
,
Boettcher
,
P.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2016
, “
Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures
,”
ASME J. Heat Transfer
,
138
(
7
), p.
072301
.
26.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
.
27.
Bellan
,
S.
,
Alam
,
T. E.
,
Gonzalez-Aguilar
,
J.
,
Romero
,
M.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2015
, “
Numerical and Experimental Studies on Heat Transfer Characteristics of Thermal Energy Storage System Packed With Molten Salt PCM Capsules
,”
Appl. Therm. Eng.
,
90
, pp.
970
979
.
28.
Xia
,
L.
,
Zhang
,
P.
, and
Wang
,
R. Z.
,
2010
, “
Numerical Heat Transfer Analysis of the Packed Bed Latent Heat Storage System Based on an Effective Packed Bed Model
,”
Energy
,
35
(
5
), pp.
2022
2032
.
29.
Bédécarrats
,
J. P.
,
Castaing-Lasvignottes
,
J.
,
Strub
,
F.
, and
Dumas
,
J. P.
,
2009
, “
Study of a Phase Change Energy Storage Using Spherical Capsules. Part I: Experimental Results
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2527
2536
.
30.
Bédécarrats
,
J. P.
,
Castaing-Lasvignottes
,
J.
,
Strub
,
F.
, and
Dumas
,
J. P.
,
2009
, “
Study of a Phase Change Energy Storage Using Spherical Capsules—Part II: Numerical Modelling
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2537
2546
.
31.
Amin
,
N. A. M.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2012
, “
Effectiveness-NTU Correlation for Low Temperature PCM Encapsulated in Spheres
,”
Appl. Energy
,
93
, pp.
549
555
.
32.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z. T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.
33.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Xiao
,
S. L.
,
Liu
,
M. J.
,
Zeng
,
Y.
,
Lu
,
H.
,
Yu
,
Z. T.
, and
Cen
,
K. F.
,
2016
, “
An Experimental and Numerical Investigation of Constrained Melting Heat Transfer of a Phase Change Material in a Circumferentially Finned Spherical Capsule for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
100
, pp.
1063
1075
.
34.
Saitoh
,
T.
, and
Kato
,
K.
,
1993
, “
Experiment on Melting in Heat Storage Capsule With Close Contact and Natural Convection
,”
Exp. Therm. Fluid Sci.
,
6
(
3
), pp.
273
281
.
35.
Groulx
,
D.
,
2018
, “
The Rate Problem in Solid-Liquid Phase Change Heat Transfer: Efforts and Questions Toward Heat Exchanger Design Rules
,”
16th International Heat Transfer Conference
, Beijing, China, Aug. 10–15, Paper No.
IHTC16-KN23
.https://www.researchgate.net/publication/325192535_The_Rate_Problem_in_Solid-Liquid_Phase_Change_Heat_Transfer_Efforts_and_Questions_Toward_Heat_Exchanger_Design_Rules
You do not currently have access to this content.