The temperature-dependent dynamics of a negative temperature coefficient (NTC) thermistor conducting variable electric current is modeled using the differential approach. The thermistor is assumed to follow the Steinhart–Hart resistance-temperature equation. The developed mathematical model consists of a nonlinear differential-algebraic equations system, and it was analyzed by the Adomian decomposition method (ADM) and its time-marching version known as the multistage Adomian decomposition method (MADM) as well as the Dormand–Prince (DP) numerical method. Five sets of experiments were conducted on five different NTC thermistors and the laboratory measurements were compared with the model predictions. It is demonstrated that the proposed model, when combined with the MADM, can accurately simulate the thermal behavior of the NTC thermistors. The MADM reproduces the experimental temperature dynamics of the five NTC thermistors with an average absolute relative error of about 2.601% while the corresponding errors for the DP method and the classic ADM are 8.122% and 51.255%, respectively. Also, it is shown that the MADM is highly efficient in terms of computational efficiency and it is approximately 6.5 times faster than the classic DP method, when tuned appropriately.

References

References
1.
Chen
,
C.
,
2009
, “
Evaluation of Resistance–Temperature Calibration Equations for NTC Thermistors
,”
Measurement
,
42
(
7
), pp.
1103
1111
.
2.
Feteira
,
A.
,
2009
, “
Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective
,”
J. Am. Ceram. Soc.
,
92
(
5
), pp.
967
983
.
3.
Billings
,
K.
, and
Morey
,
T.
,
2011
,
Switchmode Power Supply Handbook
,
3rd ed.
,
McGraw-Hill
,
New York
.
4.
Wang
,
Y.
,
Zhang
,
X.
,
Wang
,
W.
, and
Xu
,
D.
,
2015
, “
Three-Stage Inrush Current Suppressed Circuit for BCM Boost Converter
,”
Int. J. Circuit Theory App.
,
43
(
5
), pp.
684
690
.
5.
Mrooz
,
O.
,
Kovalski
,
A.
,
Pogorzelska
,
J.
,
Shpotyuk
,
O.
,
Vakiv
,
M.
,
Butkiewicz
,
B.
, and
Maciak
,
J.
,
2001
, “
Thermoelectrical Degradation Processes in NTC Thermistors for InRush Current Protection of Electronic Circuits
,”
Microelectron. Reliab.
,
41
(
5
), pp.
773
777
.
6.
Park
,
K.
, and
Lee
,
J. K.
,
2007
, “
Mn–Ni–Co–Cu–Zn–O NTC Thermistors With High Thermal Stability for Low Resistance Applications
,”
Scr. Mater.
,
57
(
4
), pp.
329
332
.
7.
Muralidharan
,
M. N.
,
Rohini
,
P. R.
,
Sunny
,
E. K.
,
Dayas
,
K. R.
, and
Seema
,
A.
,
2012
, “
Effect of Cu and Fe Addition on Electrical Properties of Ni–Mn–Co–O NTC Thermistor Compositions
,”
Ceram. Int.
,
38
(
8
), pp.
6481
6486
.
8.
He
,
L.
,
Ling
,
Z. Y.
, and
Zhang
,
G.
,
2015
, “
Connectivity Between Electrical Conduction and Electrode Structure in Mn–Co–Ni–O Thick-Film Thermistors
,”
Appl. Phys. A: Mater.
,
118
(
1
), pp.
177
182
.
9.
Vaegae
,
N. K.
,
Komanapalli
,
V. L. N.
, and
Annepu
,
B. R.
,
2016
, “
Design and Modeling of an Intelligent Temperature to Frequency Converter
,”
Measurement
,
85
, pp.
54
64
.
10.
Steinhart
,
J. S.
, and
Hart
,
S. R.
,
1968
, “
Calibration Curves for Thermistors
,”
Deep-Sea Res. Oceanogr. Abstr.
,
15
(
4
), pp.
497
503
.
11.
Childs
,
P. R. N.
,
2001
,
Practical Temperature Measurement
,
Butterworth-Heinemann
,
Boston, MA
.
12.
Fraden
,
J.
,
2010
,
Handbook of Modern Sensors: Physics, Designs, and Applications
,
Springer
,
New York
.
13.
Kerlin
,
T. W.
, and
Shepard
,
R. L.
,
1982
,
Industrial Temperature Measurement
,
International Society of Automation (ISA) Press
,
Research Triangle Park, NC
.
14.
Eke
,
R.
,
Kavasoglu
,
A. S.
, and
Kavasoglu
,
N.
,
2012
, “
Design and Implementation of a Low-Cost Multi-Channel Temperature Measurement System for Photovoltaic Modules
,”
Measurement
,
45
(
6
), pp.
1499
1509
.
15.
Keskin
,
A. Ü.
,
2005
, “
A Simple Analog Behavioural Model for NTC Thermistors Including Selfheating Effect
,”
Sens. Actuators, A
,
118
(
2
), pp.
244
247
.
16.
Wang
,
L. M.
,
Deng
,
Y. F.
,
Zhao
,
X. L.
, and
Liu
,
B. L.
,
2008
, “
A Neural Network Approach for Creating a NTC Thermistor Model Library for PSpice
,”
IEEE
International Conference on Cybernetics and Intelligent Systems
,
Chengdu, China
,
Sept. 21–24
, pp.
1133
1137
.
17.
Fowler
,
A. C.
,
Frigaard
,
I.
, and
Howison
,
S. D.
,
1992
, “
Temperature Surges in Current-Limiting Circuit Devices
,”
SIAM J. Appl. Math.
,
52
(
4
), pp.
998
1011
.
18.
Khani
,
F.
,
Ahmadzadeh Raji
,
M.
, and
Hamedi Nejad
,
H.
,
2009
, “
Analytical Solutions and Efficiency of the Nonlinear Fin Problem With Temperature-Dependent Thermal Conductivity and Heat Transfer Coefficient
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
8
), pp.
3327
3338
.
19.
Singh
,
S.
,
Kumar
,
D.
, and
Rai
,
K. N.
,
2014
, “
Convective-Radiative Fin With Temperature Dependent Thermal Conductivity, Heat Transfer Coefficient and Wavelength Dependent Surface Emissivity
,”
Propul. Power Res.
,
3
(
4
), pp.
207
221
.
20.
Sun
,
Y.
,
Ma
,
J.
,
Li
,
B.
, and
Guo
,
Z.
,
2016
, “
Predication of Nonlinear Heat Transfer in a Convective-Radiative Fin With Temperature-Dependent Properties by the Collocation Spectral Method
,”
Numer. Heat Transfer, Part B
,
69
(
1
), pp.
68
83
.
21.
Coughanowr
,
D. R.
, and
Leblanc
,
S. E.
,
2009
,
Process Systems Analysis and Control
,
3rd ed.
,
McGraw-Hill
,
New York
.
22.
Adomian
,
G.
, and
Rach
,
R.
,
1983
, “
Inversion of Nonlinear Stochastic Operators
,”
J. Math. Anal. Appl.
,
91
(
1
), pp.
39
46
.
23.
Adomian
,
G.
,
1994
,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
24.
Adomian
,
G.
,
1990
, “
A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations
,”
Math. Comput. Model.
,
13
(
7
), pp.
17
43
.
25.
Abbasbandy
,
S.
,
2003
, “
Improving Newton-Raphson Method for Nonlinear Equations by Modified Adomian Decomposition Method
,”
Appl. Math. Comput.
,
145
(
2–3
), pp.
887
893
.
26.
Chiu
,
C.-H.
, and
Chen
,
C.-K.
,
2003
, “
Application of Adomian's Decomposition Procedure to the Analysis of Convective-Radiative Fins
,”
ASME J. Heat Transfer
,
125
(
2
), pp.
312
316
.
27.
Fatoorehchi
,
H.
, and
Abolghasemi
,
H.
,
2014
, “
Approximating the Minimum Reflux Ratio of Multicomponent Distillation Columns Based on the Adomian Decomposition Method
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
3
), pp.
880
886
.
28.
Fatoorehchi
,
H.
, and
Abolghasemi
,
H.
,
2016
, “
Series Solution of Nonlinear Differential Equations by a Novel Extension of the Laplace Transform Method
,”
Int. J. Comput. Math.
,
93
(
8
), pp.
1299
1319
.
29.
Fatoorehchi
,
H.
,
Abolghasemi
,
H.
, and
Rach
,
R.
,
2015
, “
A New Parametric Algorithm for Isothermal Flash Calculations by the Adomisan Decomposition of Michaelis-Menten Type Nonlinearities
,”
Fluid Phase Equilib.
,
395
(
15
), pp.
44
50
.
30.
Makinde
,
O. D.
, and
Sibanda
,
P.
,
2008
, “
Magnetohydrodynamic Mixed-Convective Flow and Heat and Mass Transfer Past a Vertical Plate in a Porous Medium With Constant Wall Suction
,”
ASME J. Heat Transfer
,
130
(
11
), p.
112602
.
31.
Fatoorehchi
,
H.
,
Gutman
,
I.
, and
Abolghasemi
,
H.
,
2015
, “
A Combined Technique for Computation of Energy-Effect of Cycles in Conjugated Molecules
,”
J. Math. Chem.
,
53
(
4
), pp.
1113
1125
.
32.
Fatoorehchi
,
H.
,
Rach
,
R.
,
Tavakoli
,
O.
, and
Abolghasemi
,
H.
,
2015
, “
An Efficient Numerical Scheme to Solve a Quintic Equation of State for Supercritical Fluids
,”
Chem. Eng. Commun.
,
202
(
3
), pp.
1113
1125
.
33.
Fatoorehchi
,
H.
, and
Abolghasemi
,
H.
,
2013
, “
Improving the Differential Transform Method: A Novel Technique to Obtain the Differential Transforms of Nonlinearities by the Adomian Polynomials
,”
Appl. Math. Model.
,
37
(
8
), pp.
6008
6017
.
34.
Kundu
,
B.
, and
Miyara
,
A.
,
2009
, “
An Analytical Method for Determination of the Performance of a Fin Assembly Under Dehumidifying Conditions: A Comparative Study
,”
Int. J. Refrig.
,
32
(
2
), pp.
369
380
.
35.
Bhanja
,
D.
, and
Kundu
,
B.
,
2012
, “
Radiation Effect on Optimum Design Analysis of a Constructal T-Shaped Fin With Variable Thermal Conductivity
,”
Heat Mass Transfer
,
48
(
1
), pp.
109
122
.
36.
Duan
,
J.-S.
,
2011
, “
Convenient Analytic Recurrence Algorithms for the Adomian Polynomials
,”
Appl. Math. Comput.
,
217
(
13
), pp.
6337
6348
.
37.
Kundu
,
B.
, and
Lee
,
K.-S.
,
2011
, “
Decomposition Method for Thermal Design Analysis of Vertical Straight Fins Under Condensation of Quiescent and Flowing Steam
,”
Heat Mass Transfer
,
47
(
10
), pp.
1261
1274
.
38.
Ayoobi
,
A.
, and
Ramezanizadeh
,
M.
,
2013
, “
Analytical Investigation of Gaussian Roughness Effects on the Thermal Performance of Conical Microfins
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031901
.
39.
Duan
,
J.-S.
,
Wang
,
Z.
,
Fu
,
S.-Z.
, and
Chaolu
,
T.
,
2013
, “
Parametrized Temperature Distribution and Efficiency of Convective Straight Fins With Temperature-Dependent Thermal Conductivity by a New Modified Decomposition Method
,”
Int. J. Heat Mass Transfer
,
59
, pp.
137
143
.
40.
Rèpaci
,
A.
,
1990
, “
Nonlinear Dynamical Systems: On the Accuracy of Adomian's Decomposition Method
,”
Appl. Math. Lett.
,
3
(
4
), pp.
35
39
.
41.
Fatoorehchi
,
H.
,
Abolghasemi
,
H.
, and
Zarghami
,
R.
,
2015
, “
Analytical Approximate Solutions for a General Nonlinear Resistor-Nonlinear Capacitor Circuit Model
,”
Appl. Math. Model.
,
39
(
19
), pp.
6021
6031
.
You do not currently have access to this content.