A new oscillating heat pipe (OHP) charged with hybrid fluids can improve thermal performance. The key difference in this OHP is that it uses room temperature liquid metal (Galinstan consisting of gallium, indium, and tin) and water as the working fluid. The OHP was fabricated on a copper plate with six turns and a 3 × 3 mm2 cross section. The OHP with hybrid fluids as the working fluid was investigated through visual observation and thermal measurement. Liquid metal was successfully driven to flow through the OHP by the pressure difference between the evaporator and the condenser without external force. Experimental results show that while added liquid metal can increase the heat transport capability, liquid metal oscillation amplitude decreases as the filling ratio of liquid metal increases. Visualization of experimental results show that liquid metal oscillation position and velocity increase as the heat input increases. Oscillating motion of liquid metal in the OHP significantly increases the heat transfer performance at high heat input. The lowest thermal resistance of 0.076 °C/W was achieved in the hybrid fluids-filled OHP with a heat input of 420 W. We experimentally demonstrated a 13% higher heat transfer performance using liquid metal as the working fluid compared to an OHP charged with pure water.

References

References
1.
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
A Mathematical Model of an Oscillating Heat Pipe
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1037
1046
.
2.
Ma
,
H. B.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
3.
Chiang
,
C. M.
,
Chien
,
K. H.
,
Chen
,
H.-M.
, and
Wang
,
C.-C.
,
2012
, “
Theoretical Study of Oscillatory Phenomena in a Horizontal Closed-Loop Pulsating Heat Pipe With Asymmetrical Arrayed Minichannel
,”
Int. Commun. Heat Mass
,
39
(
7
), pp.
923
930
.
4.
Chien
,
K. H.
,
Lin
,
Y. T.
,
Chen
,
Y. R.
,
Yang
,
K. S.
, and
Wang
,
C. C.
,
2012
, “
A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5722
5728
.
5.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
.
6.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
, and
Yu
,
Q.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
, p.
143116
.
7.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
8.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Study on a Pulsating Heat Pipe With Self-Rewetting Fluid
,”
ASME J Electron Packaging
,
132
(
3
), p.
031005
.
9.
Shi
,
S.
,
Cui
,
X.
,
Han
,
H.
,
Weng
,
J.
, and
Li
,
Z.
,
2016
, “
A Study of the Heat Transfer Performance of a Pulsating Heat Pipe With Ethanol-Based Mixtures
,”
Appl. Therm. Eng.
,
102
, pp.
1219
1227
.
10.
Zhu
,
Y.
,
Cui
,
X.
,
Han
,
H.
, and
Sun
,
S.
,
2014
, “
The Study on the Difference of the Start-Up and Heat-Transfer Performance of the Pulsating Heat Pipe With Water-Acetone Mixtures
,”
Int. J. Heat Mass Transfer
,
77
, pp.
834
842
.
11.
Patel
,
V. M.
,
Gaurav
., and
Mehta
,
H. B.
,
2017
, “
Influence of Working Fluids on Startup Mechanism and Thermal Performance of a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
110
, pp.
1568
1577
.
12.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D. L.
,
Hussey
,
D. S.
, and
Arif
,
M.
,
2008
, “
Visual Observation of Oscillating Heat Pipes Using Neutron Radiography
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
366
372
.
13.
Ji
,
Y.
,
Chen
,
H-h.
,
Kim
,
Y. J.
,
Yu
,
Q.
,
Ma
,
X.
, and
Ma
,
H. B.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
134
(
7
), p.
074502
.
14.
Ji
,
Y.
,
Xu
,
C.
,
Ma
,
H. B.
, and
Xinxiang
,
P.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Transfer
,
135
(
7
), p.
074504
.
15.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
,
Zhao
,
Y.
, and
Ma
,
H.
,
2014
, “
Effects of Hydrophilic Surface on Heat Transfer Performance and Oscillating Motion for an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
72
, pp.
50
65
.
16.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
, and
Zhao
,
Y.
,
2014
, “
Effects of Superhydrophobic and Superhydrophilic Surfaces on Heat Transfer and Oscillating Motion of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
8
), p.
082001
.
17.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
707
719
.
18.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
.
19.
Ji
,
Y. L.
,
Ma
,
H. B.
,
Su
,
F. M.
, and
Wang
,
G. Y.
,
2011
, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.
20.
Gao
,
Y.
,
Wang
,
L.
,
Li
,
H.
, and
Liu
,
J.
,
2014
, “
Liquid Metal as Energy Transportation Medium or Coolant Under Harsh Environment With Temperature Below Zero Centigrade
,”
Front Energy
,
8
(
1
), pp.
49
61
.
21.
Chen
,
C. H.
,
Whalen
,
J.
, and
Peroulis
,
D.
,
2007
, “
Non-Toxic Liquid-Metal 2-100 GHz MEMS Switch
,”
IEEE/MTT-S
International Microwave Symposium
, Honolulu, HI, June 3–8, pp.
363
366
.
22.
Ma
,
K.
, and
Liu
,
J.
,
2007
, “
Liquid Metal Cooling in Thermal Management of Computer Chips
,”
Front Energy
,
1
(
4
), pp.
384
402
.
23.
Xu
,
Q.
,
Oudalov
,
N.
,
Guo
,
Q.
,
Jaeger
,
H. M.
, and
Brown
,
E.
,
2012
, “
Effect of Oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium
,”
Phys Fluids
,
24
(
6
), p.
063101
.
24.
Deng
,
Y.
, and
Liu
,
J.
,
2010
, “
A Liquid Metal Cooling System for the Thermal Management of High Power LEDs
,”
Int. Commun. Heat Mass
,
37
(
7
), pp.
788
791
.
25.
Li
,
T.
,
Lv
,
Y. G.
,
Liu
,
J.
, and
Zhou
,
Y. X.
,
2006
, “
A Powerful Way of Cooling Computer Chip Using Liquid Metal With Low Melting Point as the Cooling Fluid
,”
Forschung im Ingenieurwesen
,
70
(
4
), pp.
243
251
.
26.
Mohseni
,
K.
,
2005
, “
Effective Cooling of Integrated Circuits Using Liquid Alloy Electrowetting
,”
Twenty First Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, May 15–17, pp.
20
25
.
27.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
(
3
), pp.
252
256
.
28.
Prokhorenko
,
V. Y.
,
Roshchupkin
,
V. V.
,
Pokrasin
,
M. A.
,
Prokhorenko
,
S. V.
, and
Kotov
,
V. V.
,
2000
, “
Liquid Gallium: Potential Uses as a Heat-Transfer Agent
,”
High Temp.
,
38
(
6
), pp.
954
968
.
29.
Pacio
,
J.
,
Singer
,
C.
,
Wetzel
,
T.
, and
Uhlig
,
R.
,
2013
, “
Thermodynamic Evaluation of Liquid Metals as Heat Transfer Fluids in Concentrated Solar Power Plants
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
295
302
.
30.
Vignarooban
,
K.
,
Xu
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems–A Review
,”
Appl. Energy
,
146
, pp.
383
396
.
31.
Hayashi
,
Y.
,
Saneie
,
N.
,
Yip
,
G.
,
Kim
,
Y. J.
, and
Kim
,
J.-H.
,
2016
, “
Metallic Nanoemulsion With Galinstan for High Heat-Flux Thermal Management
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1204
1216
.
32.
Lin
,
Y.-H.
,
Kang
,
S.-W.
, and
Wu
,
T.-Y.
,
2009
, “
Fabrication of Polydimethylsiloxane (PDMS) Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
573
580
.
33.
Ancharov
,
A. I.
,
Grigoryeva
,
T. F.
,
Barinova
,
A. P.
, and
Boldyrev
,
V. V.
,
2008
, “
Interaction Between Copper and Gallium
,”
Russ. Metall. (Metally)
,
2008
(
6
), pp.
475
479
.
34.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
,
Wiley-Interscience
,
New York
.
35.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C. J.
,
2012
, “
Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices
,”
J Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.
You do not currently have access to this content.