Recently, energy saving problem attracts increasing attention from researchers. This study aims to determine the optimal arrangement of a tube bundle to achieve the best overall performance. The multi-objective genetic algorithm (MOGA) is employed to determine the best configuration, where two objective functions, the average heat flux q and the pressure drop Δp, are selected to evaluate the performance and the consumption, respectively. Subsequently, a decision maker method, technique for order preference by similarity to an ideal solution (TOPSIS), is applied to determine the best compromise solution from noninferior solutions (Pareto solutions). In the optimization procedure, all the two-dimensional (2D) symmetric models are solved by the computational fluid dynamics (CFD) method. Results show that performances alter significantly as geometries of the tube bundle changes along the Pareto front. For the case 1 (using staggered arrangement as initial), the optimal q varies from 2708.27 W/m2 to 3641.25 W/m2 and the optimal Δp varies from 380.32 Pa to 1117.74 Pa, respectively. For the case 2 (using in-line arrangement as initial), the optimal q varies from 2047.56 W/m2 to 3217.22 W/m2 and the optimal Δp varies from 181.13 Pa to 674.21 Pa, respectively. Meanwhile, the comparison between the optimal solution with maximum q and the one selected by TOPSIS indicates that TOPSIS could reduce the pressure drop of the tube bundle without sacrificing too much heat transfer performance.

References

References
1.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.
2.
Matos
,
R. S.
,
Vargas
,
J. V. C.
,
Laursen
,
T. A.
, and
Saboya
,
F. E. M.
,
2001
, “
Optimization Study and Heat Transfer Comparison of Staggered Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Heat Mass Transfer
,
44
(
20
), pp.
3953
3961
.
3.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2006
, “
Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4831
4838
.
4.
Liu
,
W.
,
Liu
,
P.
,
Wang
,
J. B.
,
Zheng
,
N. B.
, and
Liu
,
Z. C.
,
2018
, “
Exergy Destruction Minimization: A Principle to Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
122
, pp.
11
21
.
5.
Liu
,
W.
,
Liu
,
P.
,
Dong
,
Z. M.
,
Yang
,
K.
, and
Liu
,
Z. C.
,
2019
, “
A Study on the Multi-Field Synergy Principle of Convective Heat and Mass Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
134
, pp.
722
734
.
6.
Wang
,
X. T.
,
Zheng
,
N. B.
,
Liu
,
P.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2017
, “
Numerical Investigation of Shell Side Performance of a Double Shell Side Rod Baffle Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2029
2039
.
7.
Wang
,
X. T.
,
Liang
,
Y. M.
,
Sun
,
Y.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2019
, “
Experimental and Numerical Investigation on Shell-Side Performance of a Double Shell-Pass Rod Baffle Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
132
, pp.
631
642
.
8.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z. H.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
9.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.
10.
Li
,
P. X.
,
Liu
,
Z. C.
,
Liu
,
W.
, and
Chen
,
G.
,
2015
, “
Numerical Study on Heat Transfer Enhancement Characteristics of Tube Inserted With Centrally Hollow Narrow Twisted Tapes
,”
Int. J. Heat Mass Transfer
,
88
, pp.
481
491
.
11.
Kumar Rout
,
P.
, and
Kumar Saha
,
S.
,
2013
, “
Laminar Flow Heat Transfer and Pressure Drop in a Circular Tube Having Wire-Coil and Helical Screw-Tape Inserts
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021901
.
12.
Yang
,
L. B.
,
Han
,
H. Z.
,
Li
,
Y. J.
, and
Li
,
X. M.
,
2015
, “
A Numerical Study of the Flow and Heat Transfer Characteristics of Outward Convex Corrugated Tubes With Twisted-Tape Insert
,”
ASME J. Heat Transfer
,
138
(
2
), p.
024501
.
13.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.
14.
Yun
,
J. Y.
, and
Lee
,
K. S.
,
2000
, “
Influence of Design Parameters on the Heat Transfer and Flow Friction Characteristics of the Heat Exchanger With Slit Fins
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2529
2539
.
15.
Liu
,
W.
,
Liu
,
Z. C.
, and
Ma
,
L.
,
2012
, “
Application of a Multi-Field Synergy Principle in the Performance Evaluation of Convective Heat Transfer Enhancement in a Tube
,”
Chin. Sci. Bull.
,
57
(
13
), pp.
1600
1607
.
16.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
17.
Long
,
R.
,
Li
,
B. D.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2018
, “
Reverse Electrodialysis: Modelling and Performance Analysis Based on Multi-Objective Optimization
,”
Energy
,
151
, pp.
1
10
.
18.
Ge
,
Y.
,
Liu
,
Z. C.
,
Sun
,
H. N.
, and
Liu
,
W.
,
2018
, “
Optimal Design of a Segmented Thermoelectric Generator Based on Three-Dimensional Numerical Simulation and Multi-Objective Genetic Algorithm
,”
Energy
,
147
, pp.
1060
1069
.
19.
Ge
,
Y.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2016
, “
Multi-Objective Genetic Optimization of the Heat Transfer for Tube Inserted With Porous Media
,”
Int. J. Heat Mass Transfer
,
101
, pp.
981
987
.
20.
Sun
,
H. N.
,
Ge
,
Y.
,
Liu
,
W.
, and
Liu
,
Z. C.
,
2019
, “
Geometric Optimization of Two-Stage Thermoelectric Generator Using Genetic Algorithms and Thermodynamic Analysis
,”
Energy
,
171
, pp.
37
48
.
21.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
22.
Vignesh Ram
,
P. S.
,
Setoguchi
,
T.
, and
Kim
,
H. D.
,
2016
, “
Effects of Vortex Generator on Cylindrical Protrusion Aerodynamics
,”
J. Therm. Sci.
,
25
(
1
), pp.
7
12
.
23.
Xie
,
G. N.
,
Sunden
,
B.
,
Wang
,
Q. W.
, and
Tang
,
L. H.
,
2009
, “
Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2484
2497
.
24.
Wang
,
X. T.
,
Zheng
,
N. B.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2018
, “
Numerical Analysis and Optimization Study on Shell-Side Performances of a Shell and Tube Heat Exchanger With Staggered Baffles
,”
Int. J. Heat Mass Transfer
,
124
, pp.
247
259
.
25.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Avci
,
E.
,
2008
, “
Estimation of Thermal and Flow Fields Due to Natural Convection Using Support Vector Machines (SVM) in a Porous Cavity With Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
928
936
.
26.
Hao
,
X. J.
,
An
,
X. R.
,
Wu
,
B.
, and
He
,
S. P.
,
2018
, “
Application of a Support Vector Machine Algorithm to the Safety Precaution Technique of Medium-Low Pressure Gas Regulators
,”
J. Therm. Sci.
,
27
(
1
), pp.
74
77
.
27.
Cheng
,
C. H.
,
Chan
,
C. K.
, and
Lai
,
G. J.
,
2008
, “
Shape Design of Millimeter-Scale Air Channels for Enhancing Heat Transfer and Reducing Pressure Drop
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2335
2345
.
28.
Cheng
,
C. H.
, and
Chang
,
M. H.
,
2003
, “
A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data
,”
Numer. Heat Transfer, Part B
,
43
(
5
), pp.
489
507
.
29.
Liu
,
Z. C.
,
Zhu
,
S. P.
,
Ge
,
Y.
,
Shan
,
F.
,
Zeng
,
L. P.
, and
Liu
,
W.
,
2017
, “
Geometry Optimization of Two-Stage Thermoelectric Generators Using Simplified Conjugate-Gradient Method
,”
Appl. Energy
,
190
, pp.
540
552
.
30.
Daróczy
,
L.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2014
, “
Systematic Analysis of the Heat Exchanger Arrangement Problem Using Multi-Objective Genetic Optimization
,”
Energy
,
65
, pp.
364
373
.
31.
Ge
,
Y.
,
Shan
,
F.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2017
, “
Optimal Structural Design of a Heat Sink With Laminar Single Phase Flow Using CFD Based Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer
,
140
(
2
), p.
022803
.https://heattransfer.asmedigitalcollection.asme.org/article.aspx?articleid=2650620
32.
Ge
,
Y.
,
Wang
,
S. C.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2019
, “
Optimal Shape Design of a Minichannel Heat Sink Applying Multi-Objective Optimization Algorithm and Three-Dimensional Numerical Method
,”
Appl. Therm. Eng.
,
148
, pp.
120
128
.
33.
Hwang
,
C. L.
,
Lai
,
Y. J.
, and
Liu
,
T. Y.
,
1993
, “
A New Approach for Multiple Objective Decision Making
,”
Comput. Oper. Res.
,
20
(
8
), pp.
889
899
.
34.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
35.
Grotjans
,
H.
, and
Menter
,
F.
,
1998
, “
Wall Functions for General Application {CFD} Codes
,”
Fourth European Computational Fluid Dynamics Conference
, Athens, Greece, Sept. 7–11, pp.
1112
1117
.https://www.tib.eu/en/search/id/BLCP%3ACN027337170/Wall-Functions-for-General-Application-CFD-Codes/
36.
Kuzmin
,
D.
,
Mierka
,
O.
, and
Turek
,
S.
,
2007
, “
On the Implementation of the κ-ε Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretisation
,”
Int. J. Comput. Sci. Math.
,
1
(
2/3/4
), p.
193
.
You do not currently have access to this content.