A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000 °C as well as ultra-high temperatures up to 2500 °C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5 °C, respectively. The uncertainty at 1000 °C was calculated to be 0.7% for a ΔT of 5 °C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be −8.6% at ∼900 °C for a case with radiative gains, and +8.2% at ∼1000 °C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of −17 and −13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ∼2500 °C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments.

References

References
1.
Yazdani
,
S.
, and
Pettes
,
M. T.
,
2018
, “
Nanoscale Self-Assembly of Thermoelectric Materials: A Review of Chemistry-Based Approaches
,”
Nanotechnology
,
29
(
43
), p.
432001
.
2.
Pettes
,
M. T.
,
Kim
,
J.
,
Wu
,
W.
,
Bustillo
,
K. C.
, and
Shi
,
L.
,
2016
, “
Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates
,”
APL Mater.
,
4
(
10
), p.
104810
.
3.
Zhang
,
Q. H.
,
Huang
,
X. Y.
,
Bai
,
S. Q.
,
Shi
,
X.
,
Uher
,
C.
, and
Chen
,
L. D.
,
2016
, “
Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges
,”
Adv. Eng. Mater.
,
18
(
2
), pp.
194
213
.
4.
He
,
J.
, and
Tritt
,
T. M.
,
2017
, “
Advances in Thermoelectric Materials Research: Looking Back and Moving Forward
,”
Science
,
357
(
6358
), p.
1369
.
5.
Chen
,
R.
,
Lee
,
J.
,
Lee
,
W.
, and
Li
,
D.
,
2019
, “
Thermoelectrics of Nanowires
,”
Chem. Rev.
(epub).
6.
Li
,
Y.
,
Liu
,
M.
,
Liu
,
K.
, and
Wang
,
C.-A.
,
2013
, “
High Li+ Conduction in Nasicon-Type Li1+xYxZr2-x(PO4)3 at Room Temperature
,”
J. Power Sources
,
240
(
1
), pp.
50
53
.
7.
Li
,
Y.
,
Zhou
,
W.
,
Chen
,
X.
,
,
X.
,
Cui
,
Z.
,
Xin
,
S.
,
Xue
,
L.
,
Jia
,
Q.
, and
Goodenough
,
J. B.
,
2016
, “
Mastering the Interface for Advanced All-Solid-State Lithium Rechargeable Batteries
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
47
), pp.
13313
13317
.
8.
Yazdani
,
S.
,
Kashfi-Sadabad
,
R.
,
Palmieri
,
A.
,
Mustain
,
W. E.
, and
Pettes
,
M. T.
,
2017
, “
Effect of Cobalt Alloying on the Electrochemical Performance of Manganese Oxide Nanoparticles Nucleated on Multiwalled Carbon Nanotubes
,”
Nanotechnology
,
28
(
15
), p.
155403
.
9.
Wu
,
W.
,
Morales-Acosta
,
M. D.
,
Wang
,
Y.
, and
Pettes
,
M. T.
,
2019
, “
Isotope Effect in Bilayer WSe2
,”
Nano Lett.
,
19
(
3
), pp.
1527
1533
.
10.
Pettes
,
M. T.
,
Ji
,
H. X.
,
Sadeghi
,
M. M.
,
Jo
,
I.
,
Wu
,
W.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2015
, “
Scattering of Phonons by High-Concentration Isotopic Impurities in Ultrathin Graphite
,”
Phys. Rev. B
,
91
(
3
), p.
035429
.
11.
Vuong
,
T. Q. P.
,
Liu
,
S.
,
Van Der Lee
,
A.
,
Cuscó
,
R.
,
Artús
,
L.
,
Michel
,
T.
,
Valvin
,
P.
,
Edgar
,
J. H.
,
Cassabois
,
G.
, and
Gil
,
B.
,
2018
, “
Isotope Engineering of Van Der Waals Interactions in Hexagonal Boron Nitride
,”
Nat. Mater.
,
17
(
2
), pp.
152
158
.
12.
Cuscó
,
R.
,
Artús
,
L.
,
Edgar
,
J. H.
,
Liu
,
S.
,
Cassabois
,
G.
, and
Gil
,
B.
,
2018
, “
Isotopic Effects on Phonon Anharmonicity in Layered Van Der Waals Crystals: Isotopically Pure Hexagonal Boron Nitride
,”
Phys. Rev. B
,
97
(
15
), p.
155435
.
13.
Li
,
X.
,
Zhang
,
J.
,
Puretzky
,
A. A.
,
Yoshimura
,
A.
,
Sang
,
X.
,
Cui
,
Q.
,
Li
,
Y.
,
Liang
,
L.
,
Ghosh
,
A. W.
,
Zhao
,
H.
,
Unocic
,
R. R.
,
Meunier
,
V.
,
Rouleau
,
C. M.
,
Sumpter
,
B. G.
,
Geohegan
,
D. B.
, and
Xiao
,
K.
,
2019
, “
Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS2
,”
ACS Nano
,
13
(
2
), pp.
2481
2489
.
14.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
2012
, “
Thermal Conductivity and Large Isotope Effect in GaN From First Principles
,”
Phys. Rev. Lett.
,
109
(
9
), p.
095901
.
15.
Lowhorn
,
N. D.
,
Wong-Ng
,
W.
,
Zhang
,
W.
,
Lu
,
Z. Q.
,
Otani
,
M.
,
Thomas
,
E.
,
Green
,
M.
,
Tran
,
T. N.
,
Dilley
,
N.
,
Ghamaty
,
S.
,
Elsner
,
N.
,
Hogan
,
T.
,
Downey
,
A. D.
,
Jie
,
Q.
,
Li
,
Q.
,
Obara
,
H.
,
Sharp
,
J.
,
Caylor
,
C.
,
Venkatasubramanian
,
R.
,
Willigan
,
R.
,
Yang
,
J.
,
Martin
,
J.
,
Nolas
,
G.
,
Edwards
,
B.
, and
Tritt
,
T.
,
2009
, “
Round-Robin Measurements of Two Candidate Materials for a Seebeck Coefficient Standard Reference Material™
,”
Appl. Phys. A
,
94
(
2
), pp.
231
234
.
16.
Wang
,
H.
,
Mccarty
,
R.
,
Salvador
,
J. R.
,
Yamamoto
,
A.
, and
König
,
J.
,
2014
, “
Determination of Thermoelectric Module Efficiency: A Survey
,”
J. Electron. Mater.
,
43
(
6
), pp.
2274
2286
.
17.
Wang
,
H.
,
Porter
,
W. D.
,
Böttner
,
H.
,
König
,
J.
,
Chen
,
L.
,
Bai
,
S.
,
Tritt
,
T. M.
,
Mayolet
,
A.
,
Senawiratne
,
J.
,
Smith
,
C.
,
Harris
,
F.
,
Gilbert
,
P.
,
Sharp
,
J. W.
,
Lo
,
J.
,
Kleinke
,
H.
, and
Kiss
,
L.
,
2013
, “
Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study—Part I: Seebeck Coefficient and Electrical Resistivity
,”
J. Electron. Mater.
,
42
(
4
), pp.
654
664
.
18.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
(
2
), pp.
105
114
.
19.
Kraemer
,
D.
,
Jie
,
Q.
,
Mcenaney
,
K.
,
Cao
,
F.
,
Liu
,
W.
,
Weinstein
,
L. A.
,
Loomis
,
J.
,
Ren
,
Z.
, and
Chen
,
G.
,
2016
, “
Concentrating Solar Thermoelectric Generators With a Peak Efficiency of 7.4%
,”
Nat. Energy
,
1
(
11
), p.
16153
.
20.
Elson
,
A.
,
Tidball
,
R.
, and
Hampson
,
A.
,
2015
,
Waste Heat to Power Market Assessment
,
ICF International
,
Fairfax, VA
.
21.
Kim
,
H. S.
,
Liu
,
W.
,
Chen
,
G.
,
Chu
,
C.-W.
, and
Ren
,
Z.
,
2015
, “
Relationship Between Thermoelectric Figure of Merit and Energy Conversion Efficiency
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
27
), pp.
8205
8210.
22.
Wang
,
H.
,
Bai
,
S.
,
Chen
,
L.
,
Cuenat
,
A.
,
Joshi
,
G.
,
Kleinke
,
H.
,
König
,
J.
,
Lee
,
H. W.
,
Martin
,
J.
,
Oh
,
M.-W.
,
Porter
,
W. D.
,
Ren
,
Z.
,
Salvador
,
J.
,
Sharp
,
J.
,
Taylor
,
P.
,
Thompson
,
A. J.
, and
Tseng
,
Y. C.
,
2015
, “
International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound From 300 K to 773 K
,”
J. Electron. Mater.
,
44
(
11
), pp.
4482
4491
.
23.
Van Der Pauw
,
L. J.
,
1958
, “
A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape
,”
Philips Tech. Rev.
,
20
(
8
), pp.
220
224
.http://www.extra.research.philips.com/hera/people/aarts/_Philips%20Bound%20Archive/PTechReview/PTechReview-20-1958_59-220.pdf
24.
García-Cañadas
,
J.
, and
Min
,
G.
,
2014
, “
Multifunctional Probes for High-Throughput Measurement of Seebeck Coefficient and Electrical Conductivity at Room Temperature
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
043906
.
25.
He
,
X.
,
Yang
,
J.
,
Jiang
,
Q.
,
Luo
,
Y.
,
Zhang
,
D.
,
Zhou
,
Z.
,
Ren
,
Y.
,
Li
,
X.
,
Xin
,
J.
, and
Hou
,
J.
,
2016
, “
A New Method for Simultaneous Measurement of Seebeck Coefficient and Resistivity
,”
Rev. Sci. Instrum.
,
87
(
12
), p.
124901
.
26.
Kraemer
,
D.
, and
Chen
,
G.
,
2014
, “
High-Accuracy Direct ZT and Intrinsic Properties Measurement of Thermoelectric Couple Devices
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
045107
.
27.
Mackey
,
J.
,
Dynys
,
F.
, and
Sehirlioglu
,
A.
,
2014
, “
Uncertainty Analysis for Common Seebeck and Electrical Resistivity Measurement Systems
,”
Rev. Sci. Instrum.
,
85
(
8
), p.
085119
.
28.
Iwanaga
,
S.
,
Toberer
,
E. S.
,
Lalonde
,
A.
, and
Snyder
,
G. J.
,
2011
, “
A High Temperature Apparatus for Measurement of the Seebeck Coefficient
,”
Rev. Sci. Instrum.
,
82
(
6
), p.
063905
.
29.
Snyder
,
G. J.
,
2015
, “
Measuring Seebeck Coefficient
,” U. S. Patent No. 9,140,612 B2.
30.
Yazdani
,
S.
,
Kim
,
H.-Y.
, and
Pettes
,
M. T.
,
2018
, “
Uncertainty Analysis of Axial Temperature and Seebeck Coefficient Measurements
,”
Rev. Sci. Instrum.
,
89
(
8
), p.
084903
.
31.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
,
1970
,
Thermophysical Properties of Matter
,
IFI/Plenum
,
New York
.
32.
Pollock, M.,
2002
, “
GRAFOIL® Flexible Graphite Engineering Design Manual
,” NeoGraf Solutions LLC, Cleveland, OH, Accessed Dec. 15, 2015, https://neograf.com/wp-content/uploads/NGS_GrafoilEngineeringDesignManual.pdf
33.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.