We demonstrate the functionality of a new active thermal microchip dedicated to the temperature calibration of scanning thermal microscopy (SThM) probes. The silicon micromachined device consists in a suspended thin dielectric membrane in which a heating resistor with a circular area of 50 μm in diameter was embedded. A circular calibration target of 10 μm in diameter was patterned at the center and on top of the membrane on which the SThM probe can land. This target is a resistive temperature detector (RTD) that measures the surface temperature of the sample at the level of the contact area. This allows evaluating the ability of any SThM probe to measure a surface temperature in ambient air conditions. Furthermore, by looking at the thermal balance of the device, the heat dissipated through the probe and the different thermal resistances involved at the contact can be estimated. A comparison of the results obtained for two different SThM probes, microthermocouples and probes with a fluorescent particle is presented to validate the functionality of the micromachined device. Based on experiments and simulations, an analysis of the behavior of probes allows pointing out their performances and limits depending on the sample characteristics whose role is always preponderant. Finally, we also show that a smaller area of the temperature sensor would be required to assess the local disturbance at the contact point.

References

References
1.
Bontempi
,
A.
,
Thiery
,
L.
,
Teyssieux
,
D.
,
Briand
,
D.
, and
Vairac
,
P.
,
2013
, “
Quantitative Thermal Microscopy Using Thermoelectric Probe in Passive Mode
,”
Rev. Sci. Instrum.
,
84
(
10
), p.
103703
.
2.
Bontempi
,
A.
,
Nguyen
,
T. P.
,
Salut
,
R.
,
Thiery
,
L.
,
Teyssieux
,
D.
, and
Vairac
,
P.
,
2016
, “
Scanning Thermal Microscopy Based on a Quartz Tuning Fork and a Microthermocouple in Active Mode (2ω Method)
,”
Rev. Sci. Instrum.
,
87
(
6
), p.
063702
.
3.
Gomes
,
S.
, and
Lefevre
,
S.
,
2008
,
Advanced Techniques and Applications on Scanning Probe Microscopy
,
F. H.
Lei
ed., Research Signpost, Kerala, India, pp.
157
195
.
4.
Gomes
,
S.
,
Assy
,
A.
, and
Chapuis
,
P. O.
,
2015
, “
Scanning Thermal Microscopy: A Review
,”
Phys. Status Solid A
,
212
(
3
), pp.
477
494
.
5.
Thiery
,
L.
,
Toullier
,
S.
,
Teyssieux
,
D.
, and
Briand
,
D.
,
2008
, “
Thermal Contact Calibration Between a Thermocouple Probe and a Microhotplate
,”
ASME J. Heat Transfer
,
130
(
9
), p.
091601
.
6.
Jo
,
I.
,
Hsu
,
I. K.
,
Lee
,
Y. J.
,
Sadeghi
,
M. M.
,
Kim
,
S.
,
Cronin
,
S.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Yao
,
Z.
, and
Shi
,
L.
,
2011
, “
Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Grapheme
,”
Nanoletters
,
11
(
1
), pp.
85
90
.
7.
Soudi
,
A.
,
Dawson
,
R. D.
, and
Gu
,
Y.
,
2011
, “
Quantitative Heat Dissipation Characteristics in Current-Carrying GaN Nanowires Probed by Combining Scanning Thermal Microscopy and Spatially Resolved Raman Spectroscopy
,”
ACS Nano
,
5
(
1
), pp.
255
262
.
8.
Yu
,
Y. J.
,
Han
,
M. Y.
,
Berciaud
,
S.
,
Georgescu
,
A. B.
,
Heinz
,
T. F.
,
Brus
,
L. E.
,
Kim
,
K. S.
, and
Kim
,
P.
,
2011
, “
High-Resolution Spatial Mapping of the Temperature Distribution of a Joule Self-Heated Grapheme Nanoribbon
,”
Appl. Phys. Lett.
,
99
(
18
), p.
183105
.
9.
Janus
,
P.
,
Szmigiel
,
D.
,
Weisheit
,
M.
,
Wielgoszewski
,
G.
,
Ritz
,
Y.
,
Grabiec
,
P.
,
Hecker
,
M.
,
Gotszalk
,
T.
,
Sulecki
,
P.
, and
Zschech
,
E.
,
2010
, “
Novel SThM Nanoprobe for Thermal Properties Investigation of Micro- and Nanoelectronic Devices
,”
Microelec. Eng.
,
87
(
5–8
), pp.
1370
1374
.
10.
Wielgoszewski
,
G.
,
Sulecki
,
P.
,
Janus
,
P.
,
Grabiec
,
P.
,
Zschech
,
E.
, and
Gotszalk
,
T.
,
2011
, “
A High Resolution Measurement System for Novel Scanning Thermal Microscopy Resistive Nanoprobe
,”
Meas. Sci. Technol.
,
22
, p.
094023
.
11.
Saïdi
,
E.
,
Samson
,
B.
,
Aigouy
,
L.
,
Volz
,
S.
,
Löw
,
P.
,
Bergaud
,
C.
, and
Mortier
,
M.
,
2009
, “
Scanning Thermal Imaging by Near-Field Fluorescence Spectroscopy
,”
Nanotechnology
,
20
(
11
), p.
115703
.
12.
Sadat
,
S.
,
Tan
,
A.
,
Chua
,
Y. J.
, and
Reddy
,
P.
,
2010
, “
Nanoscale Thermometry Using Point Contact Thermocouples
,”
Nanoletters
,
10
(
7
), pp.
2613
2617
.
13.
Kim
,
K.
,
Chung
,
J.
,
Hwang
,
G.
,
Kwon
,
O.
, and
Lee
,
J. S.
,
2011
, “
Quantitative Measurements With Scanning Thermal Microscope by Preventing the Distorsion Due to the Heat Transfer Through the Air
,”
ACS Nano
,
5
(
11
), pp.
8700
8709
.
14.
Kim
,
K.
,
Jeong
,
W.
,
Lee
,
W.
, and
Reddy
,
P.
,
2012
, “
Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry
,”
ACS Nano
,
6
(
5
), pp.
4248
4257
.
15.
Chung
,
J.
,
Kim
,
K.
,
Hwang
,
G.
,
Kwon
,
O.
,
Jung
,
S.
,
Lee
,
J.
,
Lee
,
J. W.
, and
Kim
,
G. T.
,
2010
, “
Quantitative Temperature Measurement of an Electrically Heated Carbon Nanotube Using the Null-Point Method
,”
Rev. Sci. Instrum.
,
81
(
11
), p.
114901
.
16.
Hwang
,
G.
,
Chung
,
J.
, and
Kwon
,
O.
,
2014
, “
Enabling Low-Noise Null-Point Scanning Thermal Microscopy by the Optimization of Scanning Thermal Microscope Probe Through a Rigorous Theory of Quantitative Measurement
,”
Rev. Sci. Instrum.
,
85
(
11
), p.
114901
.
17.
Menges
,
F.
,
Mensch
,
P.
,
Schmid
,
H.
,
Riel
,
H.
,
Stemmer
,
A.
, and
Gostmann
,
B.
,
2016
, “
Temperature Mapping of Operating Nanoscale Devices by Scanning Probe Thermometry
,”
Nat. Commun.
,
7
, p.
10874
.
18.
Ge
,
Y.
,
Zhang
,
Y.
,
Booth
,
J. A.
,
Weaver
,
J. M. R.
, and
Dobson
,
P. S.
,
2016
, “
Quantification of Probe–Sample Interactions of a Scanning Thermal Microscope Using a Nanofabricated Calibration Sample Having Programmable Size
,”
Nanotechnology
,
27
(
32
), p.
325503
.
19.
Varpula
,
A.
,
Timofeev
,
A. V.
,
Shchepetov
,
A.
,
Grigoras
,
K.
,
Hassel
,
J.
,
Ahopelto
,
J.
,
Ylilammi
,
M.
, and
Prunnila
,
M.
,
2017
, “
Thermoelectric Thermal Detectors Based on Ultra-Thin Heavily Doped Single-Crystal Silicon Membranes
,”
Appl. Phys. Lett.
,
110
(
26
), p.
262101
.
20.
Nguyen
,
T. P.
,
Lemaire
,
E.
,
Euphrasie
,
S.
,
Thiery
,
L.
,
Teyssieux
,
D.
,
Briand
,
D.
, and
Vairac
,
P.
,
2018
, “
Microfabricated High Temperature Sensing Platform Dedicated to Scanning Thermal Microscopy (SThM)
,”
Sens. Actuators A
,
275
, pp.
109
118
.
21.
Assy
,
A.
,
Lin
,
H. J.
,
Schoenauer-Sebag
,
M.
,
Gredin
,
P.
,
Mortier
,
M.
,
Billot
,
L.
,
Chen
,
Z.
, and
Aigouy
,
L.
,
2016
, “
Nanoscale Thermometry With Fluorescent Yttrium-Based Er/Yb-Doped Fluoride Nanocrystals
,”
Sens. Actuators A
,
250
, pp.
71
77
.
22.
Sarro
,
P. M.
,
Van Herwaarden
,
A. W.
, and
Van der Vlist
,
W.
,
1994
, “
A Silicon-Silicon Nitride Membrane Fabrication Process for Smart Thermal Sensors
,”
Sens. Actuators A
,
42
, pp.
666
671
.
23.
Simon
,
I.
,
Barsan
,
N.
,
Bauer
,
M.
, and
Weimar
,
U.
,
2001
, “
Micromachined Metal Oxide Gas Sensors: Opportunities to Improve Sensor Performance
,”
Sens. Actuators B
,
73
(
1
), pp.
1
26
.
24.
Rossi
,
C.
,
Briand
,
D.
,
Dumonteuil
,
M.
,
Camps
,
T.
,
Pham
,
P. Q.
, and
De Rooij
,
N. F.
,
2006
, “
Matrix of 10 × 10 Addressed Solid Propellant Microthrusters: Review of the Technologies
,”
Sens. Actuators A
,
126
(
1
), pp.
241
252
.
25.
Konz
,
W.
,
Hildenbrand
,
J.
,
Bauersfeld
,
M.
,
Hartwig
,
S.
,
Lambrecht
,
A.
,
Lehmann
,
V.
, and
Wöllenstein
,
J.
,
2005
, “
Micromachined IR-Source With Excellent Blackbody Like Behaviour
,” Proc.
SPIE
,
5836
, pp.
540
548
.
26.
Plummer
,
J. D.
,
Deal
,
M. D.
, and
Griffin
,
P. B.
,
2001
,
Silicon VLSI Technology: Fundamentals, Practice, and Modeling
,
Pearson
, Techniques de l'Ingénieur, Saint-Denis, France.
27.
Sultan
,
R.
,
Avery
,
A. D.
,
Underwood
,
J. M.
,
Mason
,
S. J.
,
Bassett
,
D.
, and
Zink
,
B. L.
,
2013
, “
Heat Transport by Long Mean Free Path Vibrations in Amorphous Silicon Nitride Near Room Temperature
,”
Phys. Rev. B
,
87–21
, p.
214305
.
28.
Bardon
,
J. P.
, and
Cassagne
,
B.
,
1981
, “
Techniques de L'Ingénieur, Traité de Mesures Physiques
,”
Temperature de Surface, Mesures Par Contact
, Pearson Education India Sevices, Chennai, India, Chap. R2732.
29.
Majumdar
,
A.
,
1999
, “
Scanning Thermal Microscopy
,”
Annu. Rev. Mater. Sci.
,
29
(
1
), pp.
505
585
.
30.
Shi
,
L.
, and
Majumdar
,
A.
,
2002
, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
329
332
.
31.
Gomes
,
S.
,
Trannoy
,
N.
, and
Grossel
,
P.
,
1999
, “
DC Thermal Microscopy: Study of the Thermal Exchange Between a Probe and a Sample
,”
Meas. Sci. Technol.
,
10
, pp.
805
811
.
32.
Lefevre
,
S.
,
Volz
,
S.
, and
Chapuis
,
P. O.
,
2006
, “
Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate
,”
Int. J. Heat Mass Transfer
,
49
, pp.
251
258
.
33.
Bontempi
,
A.
,
Teyssieux
,
D.
,
Friedt
,
J. M.
,
Thiery
,
L.
,
Hermelin
,
D.
, and
Vairac
,
P.
,
2014
, “
Photo-Thermal Quartz Tuning Fork Excitation for Dynamic Mode Atomic Force Microscope
,”
Appl. Phys. Lett.
,
105
(
15
), p.
154104
.
You do not currently have access to this content.