This paper deals with the numerical study of the combined heat and mass exchanges in the process of direct evaporative cooler, from a porous media of laminar air flow between two parallel insulated walls. The numerical model implements momentum, energy, and mass conservation equations of humid air and water flow incorporating non-Darcian model in the porous region. The finite volume method is used for the mathematical model resolution, and the velocity–pressure coupling is treated with the SIMPLE algorithm. The main objective of this study is to examine the influences of ambient conditions and the porous medium properties (porosity and porous layer thickness) on the direct evaporative cooling performance from a porous layer. The major results of this study demonstrate that the porous evaporative wall could, in a satisfying manner, reduce the bulk air temperature. The better cooling performance can be achieved for lower air mass flow at the entrance and relative humidity. Additionally, the evaporative cooler is more effective for a high porosity and a thick porous medium, with an improvement achieving 23% for high porosity.

References

References
1.
Sohani
,
A.
,
Sayyaadi
,
H.
, and
Mohammadhosseini
,
N.
,
2018
, “
Comparative Study of the Conventional Types of Heat and Mass Exchangers to Achieve the Best Design of Dew Point Evaporative Coolers at Diverse Climatic Conditions
,”
Energy Convers. Manage.
,
158
, pp.
327
345
.
2.
Kabeel
,
A.
,
Bassuoni
,
M.
, and
Abdelgaied
,
M.
,
2017
, “
Experimental Study of a Novel Integrated System of Indirect Evaporative Cooler With Internal Baffles and Evaporative Condenser
,”
Energy Convers. Manage.
,
138
, pp.
518
525
.
3.
Kabeel
,
A.
,
Abdelgaied
,
M.
,
Sathyamurthy
,
R.
, and
Arunkumar
,
T.
,
2017
, “
Performance Improvement of a Hybrid Air Conditioning System Using the Indirect Evaporative Cooler With Internal Baffles as a Pre-Cooling Unit
,”
Alexandria Eng. J.
,
56
(
4
), pp.
395
403
.
4.
Rafique
,
M. M.
,
Gandhidasan
,
P.
,
Rehman
,
S.
, and
Alhems
,
L. M.
,
2016
, “
Performance Analysis of a Desiccant Evaporative Cooling System Under Hot and Humid Conditions
,”
Environ. Prog. Sustainable Energy
,
35
(
5
), pp.
1476
1484
.
5.
Heidarinejad
,
G.
,
Bozorgmehr
,
M.
,
Delfani
,
S.
, and
Esmaeelian
,
J.
,
2009
, “
Experimental Investigation of Two-Stage Indirect/Direct Evaporative Cooling System in Various Climatic Conditions
,”
Build. Environ.
,
44
(
10
), pp.
2073
2079
.
6.
El-Dessouky
,
H.
,
Ettouney
,
H.
, and
Al-Zeefari
,
A.
,
2004
, “
Performance Analysis of Two-Stage Evaporative Coolers
,”
Chem. Eng. J.
,
102
(
3
), pp.
255
266
.
7.
Singh
,
S.
,
Tulsidasani
,
T.
,
Sawhney
,
R.
, and
Sodha
,
M.
,
1997
, “
Recent Researches in Indirect Evaporative Cooler—V: Relative Thermal Performance of Buildings Coupled to Direct and Indirect Evaporative Cooler
,”
Int. J. Energy Res.
,
21
(
15
), pp.
1413
1423
.
8.
Singh
,
S.
,
Tulsidasani
,
T.
,
Sawhney
,
R.
, and
Sodha
,
M.
,
1999
, “
Recent Research on an Indirect Evaporative Cooler—Part VI: Evolution of Design Pattern for Indirect Evaporative Cooler
,”
Int. J. Energy Res.
,
23
(
7
), pp.
557
561
.
9.
Mohammad
,
A. T.
,
Mat
,
S.
,
Sulaiman
,
M.
,
Sopian
,
K.
, and
Al-abidi
,
A.
,
2013
, “
Experimental Performance of a Direct Evaporative Cooler Operating in Kuala Lumpur
,”
Int. J. Therm. Environ. Eng.
,
6
(
1
), pp.
15
20
.
10.
Kuehni
,
S. M. S.
,
Bou-Zeid
,
E.
,
Webb
,
C.
, and
Shokri
,
N.
,
2016
, “
Roof Cooling by Direct Evaporation From a Porous Layer
,”
Energy Build.
,
127
, pp.
521
528
.
11.
Rong
,
L.
,
Pedersen
,
P.
,
Jensen
,
T. L.
,
Morsing
,
S.
, and
Zhang
,
G.
,
2017
, “
Dynamic Performance of an Evaporative Cooling Pad Investigated in a Wind Tunnel for Application in Hot and Arid Climate
,”
Biosyst. Eng.
,
156
, pp.
173
182
.
12.
Boukhanouf
,
R.
,
Amer
,
O.
,
Ibrahim
,
H.
, and
Calautit
,
J.
,
2018
, “
Design and Performance Analysis of a Regenerative Evaporative Cooler for Cooling of Buildings in Arid Climates
,”
Build. Environ.
,
142
, pp.
1
10
.
13.
Kabeel
,
A.
, and
Bassuoni
,
M.
,
2017
, “
A Simplified Experimentally Tested Theoretical Model to Reduce Water Consumption of a Direct Evaporative Cooler for Dry Climates
,”
Int. J. Refrig.
,
82
, pp.
487
494
.
14.
Halasz
,
B.
,
1998
, “
A General Mathematical Model of Evaporative Cooling Devices
,”
Rev. Gén. Therm.
,
37
(
4
), pp.
245
255
.
15.
Halasz
,
B.
,
1999
, “
Application of a General Non-Dimensional Mathematical Model to Cooling Towers
,”
Int. J. Therm. Sci.
,
38
(
1
), pp.
75
88
.
16.
Dai
,
Y.
, and
Sumathy
,
K.
,
2002
, “
Theoretical Study on a Cross-Flow Direct Evaporative Cooler Using Honeycomb Paper as Packing Material
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1417
1430
.
17.
Camargo
,
J. R.
,
Ebinuma
,
C. D.
, and
Silveira
,
J. L.
,
2005
, “
Experimental Performance of a Direct Evaporative Cooler Operating During Summer in a Brazilian City
,”
Int. J. Refrig.
,
28
(
7
), pp.
1124
1132
.
18.
Beshkani
,
A.
, and
Hosseini
,
R.
,
2006
, “
Numerical Modeling of Rigid Media Evaporative Cooler
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
636
643
.
19.
Wu
,
J.
,
Huang
,
X.
, and
Zhang
,
H.
,
2009
, “
Theoretical Analysis on Heat and Mass Transfer in a Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
980
984
.
20.
Wu
,
J.
,
Huang
,
X.
, and
Zhang
,
H.
,
2009
, “
Numerical Investigation on the Heat and Mass Transfer in a Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
195
201
.
21.
Fouda
,
A.
, and
Melikyan
,
Z.
,
2011
, “
A Simplified Model for Analysis of Heat and Mass Transfer in a Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
932
936
.
22.
Elmetenani
,
S.
,
Yousfi
,
M.
,
Merabeti
,
L.
,
Belgroun
,
Z.
, and
Chikouche
,
A.
,
2011
, “
Investigation of an Evaporative Air Cooler Using Solar Energy Under Algerian Climate
,”
Energy Procedia
,
6
, pp.
573
582
.
23.
Kulkarni
,
R.
, and
Rajput
,
S.
,
2011
, “
Comparative Performance of Evaporative Cooling Pads of Alternative Materials
,”
Int. J. Adv. Eng. Sci. Technol.
,
10
(
2
), pp.
239
244
.
24.
Haruna
,
I. U.
,
Akintunji
,
L. L.
,
Momoh
,
B. S.
, and
Tikau
,
M. I.
,
2014
, “
Theoretical Performance Analysis of Direct Evaporative Cooler in Hot and Dry Climates
,”
Int. J. Sci. Technol. Res.
,
3
(
4
), pp.
193
197
.
25.
Ali
,
M.
,
Vukovic
,
V.
,
Sheikh
,
N. A.
, and
Ali
,
H. M.
,
2015
, “
Performance Investigation of Solid Desiccant Evaporative Cooling System Configurations in Different Climatic Zones
,”
Energy Convers. Manage.
,
97
, pp.
323
339
.
26.
Emdadi
,
Z.
,
Maleki
,
A.
,
Mohammad
,
M.
,
Asim
,
N.
, and
Azizi
,
M.
,
2017
, “
Coupled Evaporative and Desiccant Cooling Systems for Tropical Climate
,”
Int. J. Environ. Sci.
,
2
, pp.
278
282
.
27.
Khafaji
,
H.
,
Ekaid
,
A.
, and
Terekhov
,
V.
,
2015
, “
A Numerical Study of Direct Evaporative Air Cooler by Forced Laminar Convection Between Parallel-Plates Channel With Wetted Walls
,”
J. Eng. Thermophys.
,
24
(
2
), pp.
113
122
.
28.
Terekhov
,
V.
,
Gorbachev
,
M.
, and
Khafaji
,
H.
,
2016
, “
Evaporative Cooling of Air in an Adiabatic Channel With Partially Wetted Zones
,”
Thermophys. Aeromech.
,
23
(
2
), pp.
221
230
.
29.
Kovačević
,
I.
, and
Sourbron
,
M.
,
2017
, “
The Numerical Model for Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
113
, pp.
8
19
.
30.
Dukhan
,
N.
,
2012
, “
Analysis of Brinkman-Extended Darcy Flow in Porous Media and Experimental Verification Using Metal Foam
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071201
.
31.
Nasr
,
A.
, and
Al-Ghamdi
,
A. S.
,
2017
, “
Numerical Study of Evaporation of Falling Liquid Film on One of Two Vertical Plates Covered With a Thin Porous Layer by Free Convection
,”
Int. J. Therm. Sci.
,
112
, pp.
335
344
.
32.
Chou
,
Y.
, and
Yang
,
R.-J.
,
2007
, “
The Evaporation of a Saturated Porous Layer Inside an Inclined Airflow Channel
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
407
417
.
33.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2002
,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
34.
Duan
,
Z.
,
Zhan
,
C.
,
Zhang
,
X.
,
Mustafa
,
M.
,
Zhao
,
X.
,
Alimohammadisagvand
,
B.
, and
Hasan
,
A.
,
2012
, “
Indirect Evaporative Cooling: Past, Present and Future Potentials
,”
Renewable Sustainable Energy Rev.
,
16
(
9
), pp.
6823
6850
.
35.
Lin
,
J.
,
Thu
,
K.
,
Bui
,
T.
,
Wang
,
R.
,
Ng
,
K. C.
, and
Chua
,
K.
,
2016
, “
Study on Dew Point Evaporative Cooling System With Counter-Flow Configuration
,”
Energy Convers. Manage.
,
109
, pp.
153
165
.
36.
Zhan
,
C.
,
Zhao
,
X.
,
Smith
,
S.
, and
Riffat
,
S.
,
2011
, “
Numerical Study of a m-Cycle Cross-Flow Heat Exchanger for Indirect Evaporative Cooling
,”
Build. Environ.
,
46
(
3
), pp.
657
668
.
37.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
38.
Terzi
,
A.
,
Foudhil
,
W.
,
Harmand
,
S.
, and
Jabrallah
,
S. B.
,
2016
, “
Liquid Film Evaporation Inside an Inclined Channel: Effect of the Presence of a Porous Layer
,”
Int. J. Therm. Sci.
,
109
, pp.
136
147
.
39.
Chen
,
W.
,
Liu
,
S.
, and
Lin
,
J.
,
2015
, “
Analysis on the Passive Evaporative Cooling Wall Constructed of Porous Ceramic Pipes With Water Sucking Ability
,”
Energy Build.
,
86
, pp.
541
549
.
You do not currently have access to this content.