Heat transfer from a cylinder of square cross section (either dissipating constant heat flux (qW) or maintaining at a constant temperature (TW)) placed near a plane wall under the incidence of nonuniform linear/nonlinear velocity profile is studied numerically (finite volume method (FVM), quadratic upstream interpolation for convective kinematics (QUICK), and SIMPLE). The conventional fluids are chosen as water, and ethylene glycol–water mixture. The nanoparticles are selected as Al2O3 and CuO. Roles of pressure gradient P (at the inlet), temperature of base fluids, thermal conditions (TW or qW), and nanofluids' parameters (nanoparticle concentrations (ϕ), diameter, materials, and base fluids) on the heat transfer (Nusselt number (Nu¯M)) of the cylinder are investigated here. Nu¯M enhancement from the cylinder together with its drag coefficient reduction/increment due to addition of nanomaterials in both fluids at two different temperatures is assessed under the Couette flow. Classical fluid dynamics relationship among Nu¯M, Reynolds number (Re), and Prandtl number is discussed through Colburn j–factor, and hence the utility of proposed correlation between j–factor and Re toward engineering problems is also explored. The graphical observations of dependency of Nu¯M on the aforesaid parameters are reconfirmed by proposed functional forms of Nu¯M=Nu¯M(P),Nu¯M=Nu¯M(ϕ) and hence Nu¯M=Nu¯M(P,ϕ). An effort is made to examine the effectiveness of the aforementioned parameters on the heat transfer enhancement rate.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Argonne National Laboratory, Lemont, IL, Report No. ANL/MSD/CP-84938.
2.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Burgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
On the Cooling of Electronics With Nanofluids
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051401
.
3.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids: Approaches and Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5951
5993
.
4.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.
5.
Haddad
,
Z.
,
Abu-Nada
,
E.
,
Oztop
,
H. F.
, and
Mataoui
,
A.
,
2012
, “
Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
57
, pp.
152
162
.
6.
Rashidi
,
S.
,
Bovand
,
M.
,
Esfahani
,
J. A.
, and
Ahmadi
,
G.
,
2016
, “
Discrete Particle Model for Convective Al2O3-Water Nanofluid Around a Triangular Obstacle
,”
Appl. Therm. Eng.
,
100
, pp.
39
54
.
7.
Vakili
,
M.
,
Mohebbi
,
A.
, and
Hashemipour
,
H.
,
2013
, “
Experimental Study on Convective Heat Transfer of TiO2 Nanofluids
,”
Heat Mass Transfer
,
49
(
8
), pp.
1159
1165
.
8.
Etminan-Farooji
,
V.
,
Ebrahimnia-Bajestan
,
E.
,
Niazmand
,
H.
, and
Wongwises
,
S.
,
2012
, “
Unconfined Laminar Nanofluid Flow and Heat Transfer Around a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1475
1485
.
9.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
10.
Syam Sundar
,
L.
, and
Sharma
,
K. V.
,
2008
, “
Thermal Conductivity Enhancement Nanoparticles Distilled Water
,”
Int. J. Nanopart.
,
1
(
1
), pp.
66
77
.
11.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2010
, “
The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol+ Water Mixtures
,”
J. Nanopart. Res.
,
12
(
4
), pp.
1469
1477
.
12.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Therm. Sci.
,
66
, pp.
82
90
.
13.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2012
, “
A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4063
4078
.
14.
Maiti
,
D. K.
, and
Bhatt
,
R.
,
2015
, “
Interactions of Vortices of a Square Cylinder and a Rectangular Vortex Generator Under Couette-Poiseuille Flow
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051203
.
15.
Sharma
,
A.
, and
Eswaran
,
V.
,
2005
, “
Effect of Channel-Confinement and Aiding/Opposing Buoyancy on the Two-Dimensional Laminar Flow and Heat Transfer Across a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5310
5322
.
16.
Bhattacharyya
,
S.
,
Maiti
,
D. K.
, and
Dhinakaran
,
S.
,
2006
, “
Influence of Buoyancy on Vortex Shedding and Heat Transfer From a Square Cylinder in Proximity to a Wall
,”
Numer. Heat Transfer, Part A: Appl.
,
50
(
6
), pp.
585
606
.
17.
Seyyedi
,
S. M.
,
Bararnia
,
H.
,
Ganji
,
D. D.
,
Gorji-Bandpy
,
M.
, and
Soleimani
,
S.
,
2012
, “
Numerical Investigation of the Effect of a Splitter Plate on Forced Convection in a Two Dimensional Channel With an Inclined Square Cylinder
,”
Int. J. Therm. Sci.
,
61
, pp.
1
14
.
18.
Wu
,
H. W.
, and
Wang
,
R. H.
,
2011
, “
Mixed Convective Heat Transfer Past a Heated Square Porous Cylinder in a Horizontal Channel With Varying Channel Height
,”
ASME J. Heat Transfer
,
133
(
2
), p.
022503
.
19.
Valipour
,
M. S.
, and
Ghadi
,
A. Z.
,
2011
, “
Numerical Investigation of Fluid Flow and Heat Transfer Around a Solid Circular Cylinder Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1296
1304
.
20.
Modak
,
M.
,
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2018
, “
An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO-Water Nanofluids in Circular Jet Impingement Cooling
,”
ASME J. Heat Transfer
,
140
(
1
), p.
012401
.
21.
Yoon
,
D. H.
,
Yang
,
K. S.
, and
Choi
,
C. B.
,
2009
, “
Heat Transfer Enhancement in Channel Flow Using an Inclined Square Cylinder
,”
ASME J. Heat Transfer
,
131
(
7
), p.
074503
.
22.
Selvakumar
,
R. D.
, and
Dhinakaran
,
S.
,
2017
, “
Forced Convective Heat Transfer of Nanofluids Around a Circular Bluff Body With the Effects of Slip Velocity Using a Multi-Phase Mixture Model
,”
Int. J. Heat Mass Transfer
,
106
, pp.
816
828
.
23.
Sharma
,
S.
,
Maiti
,
D. K.
,
Alam
,
M. M.
, and
Sharma
,
B. K.
,
2018
, “
Nanofluid (H2O – Al2O3/CuO) Flow Over a Heated Square Cylinder Near a Wall Under the Incident of Couette Flow
,”
J. Mech. Sci. Technol.
,
32
(
2
), pp.
659
670
.
24.
Ahmed
,
H. E.
, and
Yusoff
,
M. Z.
,
2014
, “
Impact of Delta-Winglet Pair of Vortex Generators on the Thermal and Hydraulic Performance of a Triangular Channel Using Al2O3-Water Nanofluid
,”
ASME J. Heat Transfer
,
136
(
2
), p.
021901
.
25.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2004
, “
Shear Flow Past a Square Cylinder Near a Wall
,”
Int. J. Eng. Sci.
,
42
(
19–20
), pp.
2119
2134
.
26.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2011
, “
Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1343
1354
.
27.
Corcione
,
M.
,
Cianfrini
,
M.
,
Habib
,
E.
, and
Quintino
,
A.
,
2012
, “
Optimization of Free Convection Heat Transfer From Vertical Plates Using Nanofluids
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042501
.
28.
Vanaki
,
S. M.
,
Ganesan
,
P.
, and
Mohammed
,
H. A.
,
2016
, “
Numerical Study of Convective Heat Transfer of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1212
1239
.
29.
ASHRAE,
2005
,
ASHRAE Handbook: Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc
.,
Atlanta, GA
.
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
31.
Maiti
,
D. K.
,
2011
, “
Dependence of Flow Characteristics of Rectangular Cylinders Near a Wall on the Incident Velocity
,”
Acta Mech.
,
222
(
3–4
), pp.
273
286
.
32.
Maiti
,
D. K.
,
2012
, “
Numerical Study on Hydrodynamic Characteristics of Rectangular Cylinders Near a Wall
,”
Ocean Eng.
,
54
, pp.
251
260
.
33.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Steady Forced Convection Heat Transfer From a Heated Circular Cylinder to Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
977
990
.
34.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2006
, “
Vortex Shedding Suppression for Laminar Flow Past a Square Cylinder Near a Plane wall: A Two-Dimensional Analysis
,”
Acta Mech.
,
184
(
1–4
), pp.
15
31
.
You do not currently have access to this content.