This paper investigates the flow and heat transfer of power-law fluids over a stretching sheet where the coupling dynamics influence of viscous sheet and ambient fluid is taken into account via the stress balance. A modified Fourier's law is introduced in which the effects of viscous dissipation are taken into account by assuming that the thermal conductivity is to be shear-dependent on the velocity gradient. The conditions for both velocity and thermal boundary layers admitting similarity solutions are found, and numerical solutions are computed by a Bvp4c program. The results show that the viscous sheet and rheological properties of ambient fluids have significantly influences on both velocity and temperature fields characteristics. The formation of sheet varies with the viscosity of fluid and draw ratio, which then strongly affects the relations of the local skin friction coefficient, the local Nusselt number, and the generalized Reynolds number. Moreover, for specified parameters, the flow and heat transfer behaviors are discussed in detail.

References

References
1.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces—I: Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
AIChE J.
,
7
(
1
), pp.
26
28
.
2.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces—II: The Boundary Layer on a Continuous Flat Surface
,”
AIChE J.
,
7
(
2
), pp.
221
225
.
3.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces—III: The Boundary Layer on a Continuous Cylindrical Surface
,”
AIChE J.
,
7
(
3
), pp.
467
472
.
4.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plane
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
5.
Vleggaar
,
J.
,
1977
, “
Laminar Boundary Layer Behaviour on Continuous Accelerating Surface
,”
Chem. Eng. Sci.
,
32
(
12
), pp.
1517
1525
.
6.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
(
6
), pp.
744
746
.
7.
W. H. H.
Banks
,
1983
, “
Similarity Solutions of the Boundary-Layer Equations for a Stretching Wall
,”
J. Mech. Theor. Appl.
,
2
(3), pp.
375
392
.
8.
Wang
,
C. Y.
,
1984
, “
The Three-Dimensional Flow Due to a Stretching Flat Surface
,”
Phys. Fluids
,
27
(
8
), pp.
1915
1917
.
9.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
,
1985
, “
Temperature Field in Flow Over a Stretching Sheet With Uniform Heat Flux
,”
Int. Comm. Heat Mass Transfer
,
12
(
1
), pp.
89
94
.
10.
Grubka
,
L. J.
, and
Bobba
,
K. M.
,
1985
, “
Heat Transfer Characteristics of a Continuous Stretching Surface With Variable Temperature
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
248
250
.
11.
Chen
,
C. K.
, and
Char
,
M. I.
,
1988
, “
Heat Transfer of a Continuous Stretching Surface With Suction and Blowing
,”
J. Math. Anal. Appl.
,
135
(
2
), pp.
568
580
.
12.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface
,”
J. Phys. D
,
32
(
5
), pp.
577
585
.
13.
Magyari
,
E.
, and
Keller
,
B.
,
2000
, “
Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable Stretching Walls
,”
Eur. J. Mech. B
,
19
(
1
), pp.
109
122
.
14.
Magyari
,
E.
,
Ali
,
M. E.
, and
Keller
,
B.
,
2001
, “
Heat and Mass Transfer Characteristics of the Self-Similar Boundary-Layer Flows Induced by Continuous Surfaces Stretched With Rapidly Decreasing Velocities, Heat
,”
Mass Transfer
,
38
(
1–2
), pp.
65
74
.
15.
Weidman
,
P. D.
, and
Magyari
,
E.
,
2010
, “
Generalized Crane Flow Induced by Continuous Surfaces Stretching With Arbitrary Velocities
,”
Acta Mech.
,
209
(
3–4
), pp.
353
362
.
16.
Fang
,
T. G.
,
Zhang
,
J.
, and
Zhong
,
Y. F.
,
2012
, “
Boundary Layer Flow Over a Stretching Sheet With Variable Thickness
,”
Appl. Math. Comput.
,
218
(13), pp.
7241
7252
.
17.
Ahmed
,
J.
,
Shahzad
,
A.
,
Khan
,
M.
, and
Ali
,
R.
,
2015
, “
A Note on Convective Heat Transfer of an MHD Jeffrey Fluid Over a Stretching Sheet
,”
AIP Adv.
,
5
(
11
), p.
117117
.
18.
Ahmed
,
J.
,
Shahzad
,
A.
,
Begum
,
A.
,
Ali
,
R.
, and
Siddiqui
,
N.
,
2017
, “
Effects of Inclined Lorentz Forces on Boundary Layer Flow of Sisko Fluid Over a Radially Stretching Sheet With Radiative Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(8), pp.
3039
3050
.
19.
Al-Housseiny
,
T. T.
, and
Stone
,
H. A.
,
2012
, “
On Boundary-Layer Flows Induced by the Motion of Stretching Surfaces
,”
J. Fluid Mech.
,
706
, pp.
597
606
.
20.
Fang
,
T. G.
, and
El-Mistikawy
,
T. M. A.
,
2014
, “
Self-Similar Flow Due to the Stretching of a Deformable Fiber
,”
Eur. Phys. J. Plus
,
129
, p.
252
.
21.
Hassanien
,
I. A.
,
Abdullah
,
A. A.
, and
Gorla
,
R. S. R.
,
1998
, “
Flow and Heat Transfer in a Power-Law Fluid Over a Non-Isothermal Stretching Sheet
,”
Math. Comput. Model.
,
28
(
9
), pp.
105
116
.
22.
Howell
,
T. G.
,
Jeng
,
D. R.
, and
Dewitt
,
K. J.
,
1997
, “
Momentum and Heat Transfer on a Continuous Moving Surface in a Power Law Fluid
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1853
1861
.
23.
Ariel
,
P. D.
,
2002
, “
On the Flow of Power Law Fluid Over a Stretching Sheet-Techniques and Solutions
,”
Acta Mech.
,
156
(
1–2
), pp.
13
27
.
24.
Ahmed
,
J.
,
Mahmood
,
T.
,
Iqbal
,
Z.
,
Shahzad
,
A.
, and
Ali
,
R.
,
2016
, “
Axisymmetric Flow and Heat Transfer Over an Unsteady Stretching Sheet in Power Law Fluid
,”
J. Mol. Liq.
,
221
, pp.
386
393
.
25.
Ahmed
,
J.
,
Begum
,
A.
,
Shahzad
,
A.
, and
Ali
,
R.
,
2016
, “
MHD Axisymmetric Flow of Power-Law Fluid Over an Unsteady Stretching Sheet With Convective Boundary Conditions
,”
Results Phys.
,
6
, pp.
973
981
.
26.
Lee
,
D. Y.
, and
Irvine
,
T. F.
,
1997
, “
Shear Rate Dependent Thermal Conductivity Measurements of Non-Newtonian Fluids
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
16
24
.
27.
Shin
,
S.
, and
Lee
,
S.
,
2000
, “
Thermal Conductivity of Suspensions in Shear Flow Fields
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4275
4284
.
28.
Lin
,
S. X. Q.
,
Chen
,
X. D.
,
Chen
,
Z. D.
, and
Pratish
,
B.
,
2003
, “
Shear Rate Dependent Thermal Conductivity Measurement of Two Fruit Juice Concentrates
,”
J. Food Eng.
,
57
, pp.
217
224
.
29.
Sun
,
C.
,
Bai
,
B.
,
W.-Q
,
L.
, and
Liu
,
J.
,
2013
, “
Shear-Rate Dependent Effective Thermal Conductivity of H2O + SiO2 Nanofluids
,”
Phys. Fluids
,
25
(5), p.
52002
.
30.
Pop
,
I.
,
Rashidi
,
M.
, and
Gorla
,
R. S. R.
,
1991
, “
Mixed Convection to Power-Law Type Non-Newtonian Fluids From a Vertical Wall
,”
Polym. Plast. Technol. Eng. J.
,
30
(
1
), pp.
47
66
.
31.
Pop
,
I.
,
1993
, “
Boundary Layer Flow at a Three-Dimensional Stagnation Point in Power-Law Non-Newtonian Fluids
,”
Int. J. Heat Fluid Flow
,
14
(4), pp.
408
412
.
32.
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Lu
,
C. Q.
,
2006
, “
Heat Transfer for Power Law Non-Newtonian Fluids
,”
Chin. Phys. Lett.
,
23
(
12
), p.
3301
.
33.
Li
,
B. T.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2011
, “
Heat Transfer in Pseudo-Plastic Non-Newtonian Fluids With Variable Thermal Conductivity
,”
Energy Convers. Manage.
,
52
(
1
), pp.
355
358
.
34.
Binding
,
D. M.
, and
Jones
,
D. M.
,
1989
, “
On the Interpretation of Data From Converging Flow Rheometers
,”
Rheol. Acta
,
28
(
3
), pp.
215
222
.
35.
Hedegaard
,
A. T.
,
Gu
,
L. L.
, and
Macosko
,
C. W.
,
2015
, “
Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends
,”
J. Rheol.
,
59
(
6
), p.
1397
.
You do not currently have access to this content.