The presence of unknown thermal contact thermal resistance has limited prior two-probe thermal transport measurements of suspended graphene samples. Here, we report four-probe thermal transport measurements of suspended seven-layer graphene. By isolating the thermal contact resistance, we are able to attribute the observed reduced thermal conductivity primarily to polymeric residue on the sample instead of the contact thermal resistance, which resulted in ambiguity in the prior experimental studies of the effect of polymer reside. The extrinsic scattering rate due to the polymer residue is extracted from the measurement results based on a solution of the Peierls-Boltzmann phonon transport equation.

References

References
1.
Slack
,
G. A.
,
1973
, “
Nonmetallic Crystals With High Thermal Conductivity
,”
J. Phys. Chem. Solids
,
34
(
2
), pp.
321
335
.
2.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Mingo
,
N.
,
2010
, “
Flexural Phonons and Thermal Transport in Graphene
,”
Phys. Rev. B
,
82
(
11
), p.
115427
.
3.
Ding
,
Z.
,
Zhou
,
J.
,
Song
,
B.
,
Chiloyan
,
V.
,
Li
,
M.
,
Liu
,
T.-H.
, and
Chen
,
G.
,
2018
, “
Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite
,”
Nano Lett.
,
18
(
1
), pp.
638
649
.
4.
Lee
,
S.
,
Broido
,
D.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Hydrodynamic Phonon Transport in Suspended Graphene
,”
Nat. Commun.
,
6
(
1
), p.
6290
.
5.
Cepellotti
,
A.
,
Fugallo
,
G.
,
Paulatto
,
L.
,
Lazzeri
,
M.
,
Mauri
,
F.
, and
Marzari
,
N.
,
2015
, “
Phonon Hydrodynamics in Two-Dimensional Materials
,”
Nat. Commun.
,
6
(
1
), p.
6400
.
6.
Lee
,
S.
, and
Lindsay
,
L.
,
2017
, “
Hydrodynamic Phonon Drift and Second Sound in a (20,20) Single-Wall Carbon Nanotube
,”
Phys. Rev. B
,
95
(
18
), p.
184304
.
7.
Chen
,
G.
,
2005
,
Nanoscale Energy Transfer and Conversion
,
Oxford University Press
, New York.
8.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
9.
Shi
,
L.
,
Li
,
D.
,
Yu
,
C.
,
Jang
,
W.
,
Kim
,
D.
,
Yao
,
Z.
,
Kim
,
P.
, and
Majumdar
,
A.
,
2003
, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
ASME J. Heat Transfer
,
125
(
5
), p.
881
.
10.
Pettes
,
M. T.
, and
Shi
,
L.
,
2009
, “
Thermal and Structural Characterizations of Individual Single-, Double-, and Multi-Walled Carbon Nanotubes
,”
Adv. Funct. Mater.
,
19
(
24
), pp.
3918
3925
.
11.
Xu
,
X.
,
Pereira
,
L. F. C.
,
Wang
,
Y.
,
Wu
,
J.
,
Zhang
,
K.
,
Zhao
,
X.
,
Bae
,
S.
,
Tinh Bui
,
C.
,
Xie
,
R.
,
Thong
,
J. T. L.
,
Hong
,
B. H.
,
Loh
,
K. P.
,
Donadio
,
D.
,
Li
,
B.
, and
Özyilmaz
,
B.
,
2014
, “
Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene
,”
Nat. Commun.
,
5
(
1
), p.
3689
.
12.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2010
, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.
13.
Pettes
,
M. T.
,
Jo
,
I.
,
Yao
,
Z.
, and
Shi
,
L.
,
2011
, “
Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene
,”
Nano Lett.
,
11
(
3
), pp.
1195
1200
.
14.
Wang
,
Z.
,
Xie
,
R.
,
Bui
,
C. T.
,
Liu
,
D.
,
Ni
,
X.
,
Li
,
B.
, and
Thong
,
J. T. L. L.
,
2011
, “
Thermal Transport in Suspended and Supported Few-Layer Graphene
,”
Nano Lett.
,
11
(
1
), pp.
113
118
.
15.
Wang
,
H.
,
Hu
,
S.
,
Takahashi
,
K.
,
Zhang
,
X.
,
Takamatsu
,
H.
, and
Chen
,
J.
,
2017
, “
Experimental Study of Thermal Rectification in Suspended Monolayer Graphene
,”
Nat. Commun.
,
8
, p.
15843
.
16.
Wang
,
J.
,
Zhu
,
L.
,
Chen
,
J.
,
Li
,
B.
, and
Thong
,
J. T. L.
,
2013
, “
Suppressing Thermal Conductivity of Suspended Tri-Layer Graphene by Gold Deposition
,”
Adv. Mater.
,
25
(
47
), pp.
6884
6888
.
17.
Jo
,
I.
,
Pettes
,
M. T.
,
Lindsay
,
L.
,
Ou
,
E.
,
Weathers
,
A.
,
Moore
,
A. L.
,
Yao
,
Z.
, and
Shi
,
L.
,
2015
, “
Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods
,”
AIP Adv.
,
5
(
5
), p.
053206
.
18.
Yu
,
C.
, and
Zhang
,
G.
,
2013
, “
The Underestimated Thermal Conductivity of Graphene in Thermal-Bridge Measurement: A Computational Study
,”
J. Appl. Phys.
,
113
(
21
), p.
214304
.
19.
Seol
,
J. H.
,
Moore
,
A. L.
,
Shi
,
L.
,
Jo
,
I.
, and
Yao
,
Z.
,
2011
, “
Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide
,”
ASME J. Heat Transfer
,
133
(
2
), p.
022403
.
20.
Kim
,
J.
,
Ou
,
E.
,
Sellan
,
D. P.
, and
Shi
,
L.
,
2015
, “
A Four-Probe Thermal Transport Measurement Method for Nanostructures
,”
Rev. Sci. Instrum.
,
86
(
4
), p.
044901
.
21.
Smith
,
B.
,
Vermeersch
,
B.
,
Carrete
,
J.
,
Ou
,
E.
,
Kim
,
J.
,
Mingo
,
N.
,
Akinwande
,
D.
, and
Shi
,
L.
,
2017
, “
Temperature and Thickness Dependences of the Anisotropic in-Plane Thermal Conductivity of Black Phosphorus
,”
Adv. Mater.
,
29
(
5
), p.
1603756
.
22.
Huxtable
,
S. T.
,
Cahill
,
D. G.
, and
Phinney
,
L. M.
,
2004
, “
Thermal Contact Conductance of Adhered Microcantilevers
,”
J. Appl. Phys.
,
95
(
4
), pp.
2102
2108
.
23.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1971
,
Thermophysical Properties of Matter: Thermal Conductivity of Nonmetallic Solids
,
Ifi/Plenum
,
New York
.
24.
Li
,
X.
, and
Lee
,
S.
,
2018
, “
Role of Hydrodynamic Viscosity on Phonon Transport in Suspended Graphene
,”
Phys. Rev. B
,
97
(
9
), p.
94309
.
25.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Mingo
,
N.
,
2011
, “
Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite
,”
Phys. Rev. B
,
83
, p.
235428
.
26.
Qiu
,
B.
, and
Ruan
,
X.
,
2012
, “
Reduction of Spectral Phonon Relaxation Times From Suspended to Supported Graphene
,”
Appl. Phys. Lett.
,
100
(
19
), p.
193101
.
You do not currently have access to this content.