Describing the hydrodynamics of nanoparticles in fluid media poses interesting challenges due to the coupling between the Brownian and hydrodynamic forces at the nanoscale. We focus on multiscale formulations of Brownian motion and hydrodynamic interactions (HI) of a single flexible polymeric nanoparticle in confining flows using the Brownian Dynamics method. The nanoparticle is modeled as a self-avoiding freely jointed polymer chain that is subject to Brownian forces, hydrodynamics forces, and repulsive interactions with the confining wall. To accommodate the effect of the wall, the hydrodynamic lift due to the wall is included in the mobility of a bead of the polymer chain which depends on its proximity to the wall. Using the example of a flexible polymeric nanoparticle, we illustrate temporal dynamics pertaining to the colloidal scale as well as the nanoscale.

References

References
1.
Wei
,
L.
,
Cai
,
C.
,
Lin
,
J.
, and
Chen
,
T.
,
2009
, “
Dual-Drug Delivery System Based on Hydrogel/Micelle Composites
,”
Biomaterials
,
30
(
13
), pp.
2606
2613
.
2.
Ahmed
,
E.
,
2015
, “
Hydrogel: Preparation, Characterization, and Applications: A Review
,”
J. Adv. Res.
,
6
(
2
), pp.
105
121
.
3.
Radhakrishnan
,
R.
,
Yu
,
H. Y.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2016
, “
Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics
,”
ASME J. Heat Transfer
,
139
(
3
), p.
033001
.
4.
Wakiya
,
S.
,
1957
, “
Viscous Flows Past a Spheroid
,”
J. Phys. Soc. Jpn.
,
12
(
10
), pp.
1130
1141
.
5.
Sugihara-Seki
,
M.
,
1996
, “
The Motion of an Ellipsoid in Tube Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
324
(
1
), pp.
287
308
.
6.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Périaux
,
J.
,
2001
, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flows
,”
J. Comput. Phys.
,
169
(
2
), pp.
363
426
.
7.
Swaminathan
,
T. N.
,
Mukundakrishnan
,
K.
, and
Hu
,
H. H.
,
2006
, “
Sedimentation of an Ellipsoid Inside an Infinitely Long Tube at Low and Intermediate Reynolds Numbers
,”
J. Fluid Mech.
,
551
(
1
), pp.
357
385
.
8.
Hsu
,
R.
, and
Ganatos
,
P.
,
1989
, “
The Motion of a Rigid Body in a Viscous Fluid Bounded by a Plane Wall
,”
J. Fluid Mech.
,
207
(
1
), pp.
29
72
.
9.
Ding
,
E. J.
, and
Aidun
,
C.
,
2000
, “
The Dynamics and Scaling Law for Particles Suspended in Shear Flow With Inertia
,”
J. Fluid Mech.
,
423
, pp.
317
344
.
10.
Xia
,
Z.
,
Connington
,
K. W.
,
Rapaka
,
S.
,
Yue
,
P.
,
Feng
,
J. J.
, and
Chen
,
S.
,
2009
, “
Flow Patterns in the Sedimentation of an Elliptical Particle
,”
J. Fluid Mech.
,
625
, pp.
249
272
.
11.
Huang
,
H.
,
Yang
,
X.
, and
Lu
,
X. Y.
,
2014
, “
Sedimentation of an Ellipsoidal Particle in Narrow Tubes
,”
Phys. Fluids
,
26
(
5
), p.
053302
.
12.
Sharma
,
N.
, and
Patankar
,
N. A.
,
2004
, “
Direct Numerical Simulation of the Brownian Motion of Particles by Using Fluctuating Hydrodynamic Equations
,”
J. Comput. Phys.
,
201
(
2
), pp.
466
486
.
13.
Donev
,
A.
,
Vanden-Eijnden
,
E.
,
Garcia
,
A.
, and
Bell
,
J.
,
2010
, “
On the Accuracy of Finite Volume Schemes for Fluctuating Hydrodynamics
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
2
), pp.
149
197
.
14.
Ladd
,
A. J. C.
,
1993
, “
Short-Time Motion of Colloidal Particles: Numerical Simulation Via a Fluctuating Lattice-Boltzmann Equation
,”
Phys. Rev. Lett.
,
70
(
9
), pp.
1339
1342
.
15.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation—Part 1: Theoretical Foundation
,”
J. Fluid Mech.
,
271
, pp.
285
309
.
16.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation—Part 2: Numerical Results
,”
J. Fluid Mech.
,
271
, pp.
311
339
.
17.
Atzberger
,
P. J.
,
2011
, “
Stochastic Eulerian Lagrangian Methods for Fluid-Structure Interactions With Thermal Fluctuations
,”
J. Comput. Phys.
,
230
(
8
), pp.
2821
2837
.
18.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields
,”
Phys. Fluids
,
23
(
7
), p.
073602
.
19.
Ramakrishnan
,
N.
,
Wang
,
Y.
,
Ayyaswamy
,
P. S.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2017
, “
Motion of a Nano-Spheroid in a Cylindrical Vessel Flow: Brownian and Hydrodynamic Interactions
,”
J. Fluid Mech.
,
821
, p.
117
.
20.
Radhakrishnan
,
R.
,
Ramakrishnan
,
N.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2019
, “
Nanoscale Fluid Dynamics
,”
21st Century Nanoscience Book
,
K.
Sattler
, ed.,
Taylor and Francis
,
New York
.
21.
Eckmann
,
D. M.
,
Composto
,
R. J.
,
Tsourkas
,
A.
, and
Muzykantov
,
V. R.
,
2014
, “
Nanogel Carrier Design for Targeted Drug Delivery
,”
J. Mater. Chem. B
,
2
(
46
), pp.
8085
8097
.
22.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Fluids: Is the Controversy Over
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.
23.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.
24.
Frenkel
,
D.
, and
Smit
,
B.
,
1996
,
Understanding Molecular Simulation: Algorithms to Applications
,
Academic Press
,
Cornwall, UK
.
25.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductivemodel for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer.
,
128
(
6
), pp.
588
595
.
26.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
App. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
27.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2004
, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
,
93
(
14
), pp.
144301
144304
.
28.
Waigh
,
T. A.
,
2005
, “
Microrheology of Complex Fluids
,”
Rep. Prog. Phys.
,
68
(
3
), pp.
685
742
.
29.
Cicuta
,
P.
, and
Donald
,
A. M.
,
2007
, “
Microrheology: A Review of the Method and Applications
,”
Soft Matter
,
3
(
12
), p.
1449
.
30.
Squires
,
T. M.
, and
Mason
,
T. G.
,
2010
, “
Fluid Mechanics of Microrheology
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
413
438
.
31.
Squires
,
T. M.
, and
Mason
,
T. G.
,
2010
, “
Tensorial Generalized Stokes-Einstein Relation for Anisotropic Probe Microrheology
,”
Rheol. Acta
,
49
(
11–12
), pp.
1165
1177
.
32.
Gómez-González
,
M.
, and
Álamo
,
J. C. D.
,
2016
, “
Two-Point Particle Tracking Microrheology of Nematic Complex Fluids
,”
Soft Matter
,
12
(
26
), pp.
5758
5779
.
33.
Kailasham
,
R.
,
Chakrabarti
,
R.
, and
Prakash
,
J. R.
,
2018
, “
Rheological Consequences of Wet and Dry Friction in a Dumbbell Model With Hydrodynamic Interactions and Internal Viscosity
,”
J. Chem. Phys.
,
149
(
9
), p.
094903
.
34.
Doi
,
M.
, and
Edwards
,
S. F.
,
1986
,
The Theory of Polymer Dynamics
,
Oxford The Clarendon Press
,
New York
.
35.
Peterlin
,
A.
,
1966
, “
Hydrodynamics of Macromolecules in a Velocity Field With Longitudinal Gradient
,”
J. Polym. Sci.
,
4
(
4
), pp.
287
291
.
36.
Ferrer
,
M. C.
,
Robert
,
C. J.
,
Eckmann
,
D. M.
, and
Composto
,
R. J.
,
2015
, “
A Facile Route to Synthesize Nanogels Doped With Silver Nanoparticles
,”
J. Nanopart. Res.
,
15
, pp.
1
7
.
37.
Sarkar
,
A.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2015
, “
Hydrodynamic Interactions of Deformable Polymeric Nanocarriers and the Effect of Crosslinking
,”
Soft Matter
,
11
(
29
), pp.
5955
5969
.
38.
Liu
,
Y.
,
Lipowsky
,
R.
, and
Dimova
,
R.
,
2012
, “
Concentration Dependence of the Interfacial Tension for Aqueous Two-Phase Polymer Solutions of Dextran and Polyethylene Glycol
,”
Langmuir
,
28
(
8
), pp.
3831
3839
.
39.
Pelton
,
R.
,
Zhang
,
J.
,
chen
,
N.
, and
Moghaddamzadeh
,
A.
,
2003
, “
The Influence of Dextran Molecular Weight on the Dry Strength of Dextran-Impregnated Paper
,”
Tappi J.
,
2
, pp.
15
18
.https://imisrise.tappi.org/TAPPI/Products/03/APR/03APR15.aspx
40.
Bird
,
R. B.
,
1997
,
Dynamics of Polymeric Liquids
,
Wiley
,
Hoboken, NJ
.
41.
Larson
,
R. G.
,
2005
, “
The Rheology of Dilute Solutions of Flexible Polymers: Progress and Problems
,”
J. Rheol.
,
49
(
1
), pp.
1
70
.
42.
Alexander-Katz
,
A.
,
2006
, “
Shear-Flow-Induced Unfolding of Polymeric Globules
,”
Phys. Rev. Lett.
,
98
(
13
), p.
138101
.
43.
Miao
,
L.
,
Young
,
C. D.
, and
Sing
,
C. E.
,
2017
, “
An Iterative Method for Hydrodynamic Interactions in Brownian Dynamics Simulations of Polymer Dynamics
,”
J. Chem. Phys.
,
147
(
2
), p.
024904
.
44.
Beenakker
,
C. W. J.
,
1986
, “
Ewald Sum of the Rotne-Prager Tensor
,”
J. Chem. Phys.
,
85
(
3
), pp.
1581
1582
.
45.
Rotne
,
J.
, and
Prager
,
S.
,
1969
, “
Variational Treatment of Hydrodynamic Interaction in Polymers
,”
J. Chem. Phys.
,
50
(
11
), pp.
4831
4837
.
46.
Yamakawa
,
H.
,
1970
, “
Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction
,”
J. Chem. Phys.
,
53
(
1
), pp.
436
443
.
47.
Bleibel
,
J.
,
2012
, “
Ewald Sum for Hydrodynamic Interactions With Periodicity in Two Dimensions
,”
J. Phys. A: Math. Theor.
,
45
(
22
), p.
225002
.
48.
Zhou
,
T.
, and
Chen
,
S. B.
,
2006
, “
Computer Simulations of Diffusion and Dynamics of Short-Chain Polyelectrolytes
,”
J. Chem. Phys.
,
124
(
3
), p.
034904
.
49.
Faxen
,
H.
, and
Angew
,
Z.
,
1927
, “
Die Geschwindigkeit Zweier Kugeln, Die Unter Einwirkung Der Schwere in Einer Zähen Flüssigkeit Fallen
,”
Math. Mech.
,
7
, pp.
79
80
.
50.
Weeks
,
J. D.
,
Chandler
,
D.
, and
Andersen
,
H. C.
,
1971
, “
Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids
,”
J. Chem. Phys.
,
54
(
12
), pp.
5237
5247
.
51.
Ermak
,
D. L.
, and
McCammon
,
J. A.
,
1978
, “
Brownian Dynamics With Hydrodynamic Interactions
,”
J. Chem. Phys.
,
69
(
4
), p.
1352
.
52.
Bishop
,
M.
,
1986
, “
Polymer Shapes in Three Dimensions
,”
J. Chem. Phys.
,
85
(
10
), pp.
5961
5962
.
53.
Brenner
,
H.
,
1961
, “
The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane Surface
,”
Chem. Eng. Sci.
,
16
, pp.
242
251
.
You do not currently have access to this content.