The growth dynamics of isolated gas bubbles from a submerged capillary-tube orifice in a pool of an aqueous surfactant (sodium dodecyl sulfate or SDS) solution is computationally investigated. The governing equations for surfactant mass transport in the bulk liquid and interfacial adsorption–desorption are solved simultaneously with the Navier–Stokes equations, employing the volume-of-fluid (VOF) technique to track the deforming liquid–air interface. The VOF method tends to spread the liquid–air interface over two to three computational cells, creating an interface region with finite thickness. A new numerical treatment is developed to determine the surfactant transport and adsorption/desorption in the interface region. From the variation of the surfactant interfacial concentration, the spatio-temporal variation in interfacial tension is determined and the shape of the growing bubble is predicted. To validate the numerical model, experimental measurements of bubble shape and size are carried out using high speed videography. Because of the decrease in surface tension with surface age, bubble departure diameters in SDS–water solutions are smaller than those obtained in pure water, and they are a function of bubble frequency. At higher air-flow rates (smaller surface age), the bubble departure diameters tend toward those in pure water, whereas at low flow rates (larger surface age), they are significantly smaller than those in water and are closer in size to those in a pure liquid having surface tension equal to the equilibrium value in SDS solution. Furthermore, the nonuniform surfactant adsorption–desorption at the evolving interface results in variation in interfacial tension around the bubbles, and thus their shapes in surfactant solution are different from those in a pure liquid.

References

References
1.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Chung
,
J. N.
,
1997
,
Transport Phenomena With Drops and Bubbles
,
Springer
,
New York
.
2.
Subramani
,
A. A.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2007
, “
Experimental Study of Single-Bubble Dynamics in Isothermal Liquid Pools: Effects of Fluid Properties, Orifice Diameter and Flow Rate
,”
ASME
Paper No. IMECE2007-43025.
3.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2009
, “
Molecular-to-Large-Scale Heat Transfer With Multiphase Interfaces: Current Status and New Directions
,”
ASME J. Heat Transfer
,
131
(
12
), p.
11
.
4.
Manglik
,
R. M.
,
2011
, “
Molecular-to-Macro-Scale Control of Interfacial Behavior in Ebullient Phase Change in Aqueous Solutions of Reagents
,”
Int. J. Transp. Phenom.
,
12
(
3–4
), pp.
229
243
.
5.
Datta
,
R. L.
,
Napier
,
D. H.
, and
Newitt
,
D. M.
,
1950
, “
The Properties and Behavior of Gas Bubbles Formed at a Circular Orifice
,”
Trans. IChemE
,
28
, pp.
14
26
.
6.
Benzing
,
R. J.
, and
Myers
,
J. E.
,
1955
, “
Low Frequency Bubble Formation at Horizontal Circular Orifices
,”
Ind. Eng. Chem.
,
47
(
10
), pp.
2087
2090
.
7.
Davidson
,
L.
, and
Amick
,
E. H.
,
1956
, “
Formation of Gas Bubbles at Horizontal Orifices
,”
AIChE J.
,
2
(
3
), pp.
337
342
.
8.
Tadaki
,
T.
, and
Maeda
,
S.
,
1963
, “
The Size of Bubbles From Single Orifices
,”
J. Chem. Eng.
,
27
(
3
), pp.
147
155
.
9.
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1970
, “
The Foundation of Bubbles and Drops
,”
Advances in Chemical Engineering
, Vol.
8
,
Academic Press
,
New York
.
10.
Davidson
,
M. A.
, and
Schüler
,
B. O. G.
,
1997
, “
Bubble Formation at an Orifice in a Viscous Liquid
,”
Chem. Eng. Res. Des.
,
75
(
S
), pp.
S105
S115
.
11.
Jamialahmadi
,
M.
,
Zehtaban
,
M. R.
,
Müller-Steinhagen
,
H.
,
Sarrafi
,
A.
, and
Smith
,
J. M.
,
2001
, “
Study of Bubble Formation Under Constant Flow Conditions
,”
Chem. Eng. Res. Des.
,
79
(
5
), pp.
523
532
.
12.
Badam
,
V. K.
,
Buwa
,
V.
, and
Durst
,
F.
,
2007
, “
Experimental Investigations of Regimes of Bubble Formation on Submerged Orifices Under Constant Flow Condition
,”
Can. J. Chem. Eng.
,
85
(
3
), pp.
257
267
.
13.
Kasimsetty
,
S. S. K.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2008
, “
Computational Modeling of Dynamics of Single Bubbles Emanating From Capillary-Tube Orifice in an Isothermal Liquid Pool
,”
ASME
Paper No. IMECE2008-69251
14.
Kulkarni
,
A. A.
, and
Joshi
,
J. B.
,
2005
, “
Bubble Formation and Bubble Rise Velocity in Gas-Liquid Systems: A Review
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
5873
5931
.
15.
Manglik
,
R. M.
,
Wasekar
,
V. M.
, and
Zhang
,
J.
,
2001
, “
Dynamic and Equilibrium Surface Tension of Aqueous Surfactant and Polymeric Solutions
,”
Exp. Therm. Fluid Sci.
,
25
(
1–2
), pp.
55
64
.
16.
Miller
,
R.
,
Joos
,
P.
, and
Fainerman
,
V. B.
,
1994
, “
Dynamic Surface and Interfacial Tensions of Surfactant and Polymer Solutions
,”
Adv. Colloid Interface Sci.
,
49
(
1
), pp.
249
302
.
17.
Rosen
,
M. J.
,
2004
,
Surfactants and Interfacial Phenomena
,
Wiley-Interscience
,
Hoboken, NJ
.
18.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2000
, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
708
715
.
19.
Zhang
,
J.
, and
Manglik
,
R. M.
,
2005
, “
Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
684
691
.
20.
Hua
,
X. Y.
, and
Rosen
,
M. J.
,
1988
, “
Dynamic Surface Tension of Aqueous Surfactant Solutions. I. Basic Parameters
,”
J. Colloid Interface Sci.
,
124
(
2
), pp.
652
659
.
21.
Hua
,
X. Y.
, and
Rosen
,
M. J.
,
1991
, “
Dynamic Surface Tension of Aqueous Surfactant Solutions—3: Some Effects of Molecular Structure and Environment
,”
J. Colloid Interface Sci.
,
141
(
1
), pp.
180
190
.
22.
Joos
,
P.
,
1999
,
Dynamic Surface Phenomena
,
VSP
,
Utrecht, The Netherlands
.
23.
Chang
,
C.-H.
, and
Franses
,
E. I.
,
1995
, “
Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms
,”
Colloids Surf., A
,
100
, pp.
1
45
.
24.
Tsujii
,
K.
,
1998
,
Surface Activity
,
Academic Press
,
San Diego, CA
.
25.
Zhang
,
J.
,
Eckman
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2006
, “
A Front Tracking Method for a Deformable Intravascular Bubble in a Tube With Soluble Surfactant Transport
,”
J. Comput. Phys.
,
214
(
1
), pp.
366
396
.
26.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.
27.
Stone
,
H. A.
,
1990
, “
A Simple Derivation of the Time‐Dependent Convective‐Diffusion Equation for Surfactant Transport Along a Deforming Interface
,”
Phys. Fluids. A
,
2
(
1
), pp.
111
112
.
28.
Wong
,
H.
,
Runschitzki
,
D.
, and
Maldarelli
,
C.
,
1996
, “
On the Surfactant Mass Balance at a Deforming Fluid Interface
,”
Phys. Fluids
,
8
(
11
), pp.
3203
3204
.
29.
James
,
A. J.
, and
Lowengrub
,
J.
,
2004
, “
A Surfactant-Conserving Volume-of-Fluid Method for Interfacial Flows With Insoluble Surfactant
,”
J. Comput. Phys.
,
201
(
2
), pp.
685
722
.
30.
Renardy
,
Y. Y.
,
Renardy
,
M.
, and
Cristini
,
V.
,
2002
, “
A New Volume-of-Fluid Formulation for Surfactants and Simulation of Drop Deformation Under Shear at a Low Viscosity Ratio
,”
Eur. J. Mech. B/Fluids
,
21
(
1
), pp.
49
59
.
31.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
32.
Szyszkowski
,
B.
,
1908
, “
Experimentelle Studien Über Kapillare Eigenschaften Der Wässerigen Lösungen Von Fettsäuren
,”
Z. Phys. Chem.
,
64U
(
1
), pp.
385
414
.
33.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2003
, “
Short-Time-Transient Surfactant Dynamics and Marangoni Convection Around Boiling Nuclei
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
858
866
.
34.
Terasaka
,
K.
, and
Tsuge
,
H.
,
1993
, “
Bubble Formation Under Constant-Flow Conditions
,”
Chem. Eng. Sci.
,
48
(
19
), pp.
3417
3422
.
35.
Manglik
,
R. M.
,
Jog
,
M. A.
,
Subramani
,
A.
, and
Gatne
,
K.
,
2006
, “
Mili-Scale Visualization of Bubble Growth-Translation and Droplet Impact Dynamics
,”
ASME J. Heat Transfer
,
128
(
8
), p.
736
.
36.
Manglik
,
R. M.
,
Jog
,
M. A.
,
Patnaik
,
S.
,
Manoharan
,
S.
,
Kalaikadal
,
D.
, and
Iskrenova-Ekiert
,
E.
,
2015
, “
Visualization of Multiscale Processes—Bubble Dynamics in Surface Active Colloids
,”
ASME J. Heat Transfer
,
137
(
8
), p.
080912
.
37.
Gatne
,
K. P.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2009
, “
Surfactant-Induced Modification of Low Weber Number Droplet Impact Dynamics
,”
Langmuir
,
25
(
14
), pp.
8122
8130
.
You do not currently have access to this content.