Pool boiling heat transfer with the use of femtosecond laser surface processing (FLSP) on copper surfaces has been studied. FLSP creates a self-organized micro/nanostructured surface. In the previous pool boiling heat transfer studies with stainless steel FLSP surfaces, enhancements in critical heat flux (CHF) and heat transfer coefficients (HTCs) were observed compared to the polished reference surface. However, this study shows that copper FLSP surfaces exhibit reductions in both CHF and HTCs consistently. This reduction in heat transfer performance is a result of an oxide layer that covers the surface of the microstructures and acts as an insulator due to its low thermal conductivity. The oxide layer was observed and measured with the use of a focused ion beam milling process and found to have thickness of a few microns. The thickness of this oxide layer was found to be related to the laser fluence parameter. As the fluence increased, the oxide layer thickness increased and the heat transfer performance decreased. For a specific test surface, the oxide layer was selectively removed by a chemical etching process. The removal of the oxide layer resulted in an enhancement in the HTC compared to the polished reference surface. Although the original FLSP copper surfaces were unable to outperform the polished reference curve, this experiment illustrates how an oxide layer can significantly affect heat transfer results and dominate other surface characteristics (such as increased surface area and wicking) that typically lead to heat transfer enhancement.

References

References
1.
Lu
,
M.-C.
,
Chen
,
R.
,
Srinivasan
,
V.
,
Carey
,
V. P.
, and
Majumdar
,
A.
,
2011
, “
Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5359
5367
.
2.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.
3.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2012
, “
Micro/Nano Hierarchical Structure in Microchannel Heat Sink for Boiling Enhancement
,”
IEEE 25th International Conference on Micro Electro Mechanical Systems
(
MEMS
),
Paris, France
,
Jan. 28–Feb. 2
, pp.
285
288
.
4.
Rahman
,
M.
,
King
,
S. M.
,
Olceroglu
,
E.
, and
Mccarthy
,
M.
,
2012
, “
Nucleate Boiling on Biotemplated Nanostructured Surfaces
,”
ASME
Paper No. IMECE2012-88014.
5.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.
6.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C.-J. “Cj”.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
7.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
8.
Das
,
S.
, and
Bhaumik
,
S.
,
2014
, “
Enhancement of Nucleate Pool Boiling Heat Transfer on Titanium Oxide Thin Film Surface
,”
Arab. J. Sci. Eng.
,
39
(
10
), pp.
7385
7395
.
9.
Feng
,
B.
,
Weaver
,
K.
, and
Peterson
,
G. P.
,
2012
, “
Enhancement of Critical Heat Flux in Pool Boiling Using Atomic Layer Deposition of Alumina
,”
Appl. Phys. Lett.
,
100
(
5
), p.
53120
.
10.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.
11.
Hendricks
,
T. J.
,
Krishnan
,
S.
,
Choi
,
C.
,
Chang
,
C.-H.
, and
Paul
,
B.
,
2010
, “
Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3357
3365
.
12.
Im
,
Y.
,
Dietz
,
C.
,
Lee
,
S. S.
, and
Joshi
,
Y.
,
2012
, “
Flower-Like CuO Nanostructures for Enhanced Boiling
,”
Nanoscale Microscale Thermophys. Eng.
,
16
(
3
), pp.
145
153
.
13.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
14.
McHale
,
J. P.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Powell
,
G. A.
,
2011
, “
Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces With and Without Carbon Nanotubes
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
3
), pp.
133
150
.
15.
Saeidi
,
D.
, and
Alemrajabi
,
AA.
,
2013
, “
Experimental Investigation of Pool Boiling Heat Transfer and Critical Heat Flux of Nanostructured Surfaces
,”
Int. J. Heat Mass Transfer
,
60
, pp.
440
449
.
16.
Tang
,
Y.
,
Tang
,
B.
,
Li
,
Q.
,
Qing
,
J.
,
Lu
,
L.
, and
Chen
,
K.
,
2013
, “
Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
194
198
.
17.
Xu
,
P.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2015
, “
Enhanced Boiling Heat Transfer on Composite Porous Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
107
114
.
18.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.
19.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.
20.
Cieśliński
,
J.
,
2002
, “
Nucleate Pool Boiling on Porous Metallic Coatings
,”
Exp. Therm. Fluid Sci.
,
25
(
7
), pp.
557
564
.
21.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5459
5471
.
22.
Seo
,
G. H.
,
Hwang
,
H.
,
Yoon
,
J.
,
Yeo
,
T.
,
Son
,
H. H.
,
Jeong
,
U.
,
Jeun
,
G.
,
Choi
,
W.
, and
Kim
,
S. J.
,
2015
, “
Enhanced Critical Heat Flux With Single-Walled Carbon Nanotubes Bonded on Metal Surfaces
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
138
147
.
23.
Kruse
,
C. M.
,
Anderson
,
T.
,
Wilson
,
C.
,
Zuhlke
,
C.
,
Alexander
,
D.
,
Gogos
,
G.
, and
Ndao
,
S.
,
2015
, “
Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces
,”
Int. J. Heat Mass Transfer
,
82
, pp.
109
116
.
24.
Kruse
,
C.
,
Lucis
,
M.
,
Shield
,
J.
,
Anderson
,
T.
,
Zuhlke
,
C.
,
Alexander
,
D.
,
Gogos
,
P. G.
, and
Ndao
,
S.
,
2017
, “
Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031009
.
25.
Kruse
,
C. M.
,
Peng
,
E.
,
Zuhlke
,
C. A.
,
Shield
,
J. E.
,
Alexander
,
D. R.
,
Ndao
,
S.
, and
Gogos
,
G.
,
2017
, “
Role of Copper Oxide Layer on Pool Boiling Performance With Femtosecond Laser Processed Copper Surfaces
,”
ASME
Paper No. ICNMM2017-5574.
26.
Zuhlke
,
C. A.
,
Anderson
,
T. P.
, and
Alexander
,
D. R.
,
2013
, “
Formation of Multiscale Surface Structures on Nickel Via Above Surface Growth and Below Surface Growth Mechanisms Using Femtosecond Laser Pulses
,”
Opt. Express
,
21
(
7
), pp.
8460
8473
.
27.
Zuhlke
,
C. A.
,
Anderson
,
T. P.
, and
Alexander
,
D. R.
,
2013
, “
Fundamentals of Layered Nanoparticle Covered Pyramidal Structures Formed on Nickel During Femtosecond Laser Surface Interactions
,”
Appl. Surf. Sci.
,
283
, pp. 648–653.
28.
Zuhlke
,
C. A.
,
Anderson
,
T. P.
, and
Alexander
,
D. R.
,
2013
, “
Comparison of the Structural and Chemical Composition of Two Unique Micro/Nanostructures Produced by Femtosecond Laser Interactions on Nickel
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121603
.
29.
Zuhlke
,
C. A.
,
Alexander
,
D. R.
,
Bruce
,
J. C.
,
Ianno
,
N. J.
,
Kamler
,
C. A.
, and
Yang
,
W.
,
2010
, “
Self Assembled Nanoparticle Aggregates From Line Focused Femtosecond Laser Ablation
,”
Opt. Express
,
18
(
5
), pp.
4329
4339
.
30.
Tsubaki
,
A. T. A. T.
,
Koten
,
M. A. M. A.
,
Lucis
,
M. J. M. J.
,
Zuhlke
,
C.
,
Ianno
,
N.
,
Shield
,
J. E. J. E.
, and
Alexander
,
D. R. D. R.
,
2017
, “
Formation of Aggregated Nanoparticle Spheres Through Femtosecond Laser Surface Processing
,”
Appl. Surf. Sci.
,
419
, pp.
778
787
.
31.
Kruse
,
C.
,
Tsubaki
,
A.
,
Zuhlke
,
C.
,
Anderson
,
T.
,
Alexander
,
D.
,
Gogos
,
G.
, and
Ndao
,
S.
,
2016
, “
Secondary Pool Boiling Effects
,”
Appl. Phys. Lett.
,
108
(
5
), p.
051602
.
32.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett.
,
110
(
9
), p.
094107
.
33.
Wang
,
Q.
, and
Chen
,
R.
,
2018
, “
Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes
,”
Nano Lett.
,
18
(
5
), pp.
3096
3103
.
You do not currently have access to this content.