Nucleate pool boiling heat transfer and its ebullient dynamics in polymeric solutions at atmospheric pressure saturated conditions are experimentally investigated. Three grades of hydroxyethyl cellulose (HEC) are used, which have intrinsic viscosity in the range 5.29 ≤ [η] ≤ 10.31 [dl/g]. Their aqueous solutions in different concentrations, with zero-shear viscosity in the range 0.0021 ≤ η0 ≤ 0.0118 [N⋅s/m2], exhibit shear-thinning rheology in varying degrees, as well as gas–liquid interfacial tension relaxation and wetting. Boiling heat transfer in solutions with constant molar concentrations of each additive, which are greater than their respective critical polymer concentration C*, is seen to have anomalous characteristics. There is degradation in the heat transfer at low heat fluxes, relative to that in the solvent, where the postnucleation bubble dynamics in the partial boiling regime is dominated by viscous resistance of the polymeric solutions. At higher heat fluxes, however, there is enhancement of boiling heat transfer due to a complex interplay of pseudoplasticity and dynamic surface tension effects. The higher frequency vapor bubbling train with high interfacial shear rates in this fully developed boiling regime tends to be influenced by increasing shear-thinning and time-dependent differential interfacial tension relaxation at the dynamic gas–liquid interfaces.

References

1.
Manglik
,
R. M.
,
2011
, “
Molecular-to-Macro-Scale Control of Interfacial Behavior in Ebullient Phase Change in Aqueous Solutions of Reagents
,”
Int. J. Transp. Phenom.
,
12
(
3–4
), pp.
229
243
.https://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-12-number-3-4-2011/ijtp-12-3-4-p-229-243/
2.
Manglik
,
R. M.
,
2018
, “
Boiling in Reagent and Polymeric Solutions
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1823
1848
.
3.
Athavale
,
A. D.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2012
, “
An Experimental Investigation of Nucleate Pool Boiling in Aqueous Solutions of a Polymer
,”
AIChE J.
,
58
(
3
), pp.
668
677
.
4.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2009
, “
Molecular-to-Large-Scale Heat Transfer With Multiphase Interfaces: Current Status and New Directions
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121001
.
5.
Zhang
,
J.
, and
Manglik
,
R. M.
,
2005
, “
Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
684
691
.
6.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Chung
,
J. N.
,
1997
,
Transport Phenomena With Drops and Bubbles
,
Springer
,
New York
.
7.
Kotchaphakdee
,
P.
, and
Williams
,
M. C.
,
1970
, “
Enhancement of Nucleate Pool Boiling With Polymeric Additives
,”
Int. J. Heat Mass Transfer
,
13
(
5
), pp.
835
848
.
8.
Shul'man
,
Z. P.
,
Khusid
,
B. M.
, and
Levitskiy
,
S. P.
,
1993
, “
Special Features of Boiling of Macromolecular Polymer Solutions
,”
Heat Transfer Res.
,
25
(
7
), pp.
872
878
.
9.
Levitskiy
,
S. P.
,
Khusid
,
B. M.
, and
Shul'man
,
Z. P.
,
1996
, “
Growth of Vapor Bubbles in Boiling Polymer Solutions—II: Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
3
), pp.
639
644
.
10.
Zhang
,
J.
, and
Manglik
,
R. M.
,
2005
, “
Nucleate Pool Boiling of Aqueous Polymer Solutions on a Cylindrical Heater
,”
J. Non-Newtonian Fluid Mech.
,
125
(
2–3
), pp.
185
196
.
11.
Holmberg
,
K.
,
Jönsson
,
B.
,
Kronberg
,
B.
, and
Lindman
,
B.
,
2003
,
Surfactants and Polymers in Aqueous Solution
,
Wiley
,
New York
.
12.
Persson
,
B.
,
Nilsson
,
S.
, and
Sundelöf
,
L.-O.
,
1996
, “
On the Characterization Principles of Some Technically Important Water-Soluble Nonionic Cellulose Derivatives—Part II: Surface Tension and Interaction With a Surfactant
,”
Carbohydr. Polym.
,
29
(
2
), pp.
119
127
.
13.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubbles in Superheated Liquids
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.
14.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2003
, “
Short-Time-Transient Surfactant Dynamics and Marangoni Convection Around Boiling Nuclei
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
858
866
.
15.
Yang
,
Y. M.
, and
Maa
,
J. R.
,
1982
, “
Effects of Polymer Additives on Pool Boiling Phenomena
,”
Lett. Heat Mass Transfer
,
9
(
4
), pp.
237
244
.
16.
Paul
,
D. D.
, and
Abdel-Khalik
,
S. I.
,
1984
, “
Saturated Nucleate Pool Boiling Bubble Dynamics in Aqueous Drag-Reducing Polymer Solutions
,”
Int. J. Heat Mass Transfer
,
27
(
12
), pp.
2426
2428
.
17.
Wang
,
A. T. A.
, and
Hartnett
,
J. P.
,
1992
, “
Influence of Surfactants on Pool Boiling of Aqueous Polyacrylamide Solutions
,”
Wärme- Und Stoffübertragung
,
27
(
4
), pp.
245
248
.
18.
Macosko
,
C. W.
,
1994
,
Rheology: Principles, Measurements, and Applications
,
Wiley
,
New York
.
19.
Ibrahim
,
F. W.
,
1965
, “
Correct Determination of Staudinger's Index (Intrinsic Viscosity) and of Huggins' Constant
,”
J. Polym. Sci., Part A
,
3
, pp.
469
478
.
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
21.
Manglik
,
R. M.
,
Wasekar
,
V. M.
, and
Zhang
,
J.
,
2001
, “
Dynamic and Equilibrium Surface Tension of Aqueous Surfactant and Polymeric Solutions
,”
Exp. Therm. Fluid Sci.
,
25
(
1–2
), pp.
55
64
.
22.
Fainerman
,
V. B.
,
Makievski
,
A. V.
, and
Miller
,
R.
,
1993
, “
The Measurement of Dynamic Surface Tensions of Highly Viscous Liquids by the Maximum Bubble Pressure Method
,”
Colloids Surf., A
,
75
(
1
), pp.
229
235
.
23.
Manglik
,
R. M.
,
Bahl
,
M.
,
Vishnubhatla
,
S.
, and
Zhang
,
J.
,
2003
, “
Interfacial and Rheological Characterization of Aqueous Surfactant and Polymer Solutions
,” University of Cincinnati, Cincinnati, OH, Report No. TFTPL-9.
24.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2000
, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
708
715
.
25.
Zhang
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Experimental and Computational Study of Nucleate Pool Boiling Heat Transfer in Aqueous Surfactant and Polymer Solutions
,” University of Cincinnati, Cincinnati, OH, Report No. TFTPL-10.
26.
Jung
,
C.
, and
Bergles
,
A. E.
,
1989
, “
Evaluation of Commercial Enhanced Tubes in Pool Boiling
,” Rensselaer Polytechnic Institute, Troy, NY, Report No. DE-FC07-88ID 12772.
27.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2001
, “
Nucleate Pool Boiling Heat Transfer in Aqueous Surfactant Solutions
,” University of Cincinnati, Cincinnati, OH, Report No. TFTPL-4.
28.
Zhang
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Effect of Ethoxylation and Molecular Weight of Cationic Surfactants on Nucleate Boiling in Aqueous Solutions
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
34
42
.
29.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
(
3
), pp.
969
976
.
30.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer—I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.
31.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer—II: Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5045
5057
.
32.
Borishanskii
,
V. M.
,
1969
, “
Correlation of the Effect of Pressure on the Critical Heat Flux and Heat Transfer Rates Using the Theory of Thermodynamic Similarity
,”
Problems of Heat Transfer and Hydraulics of Two-Phase Media
,
S. S.
Kutateladze
, ed.,
Pergamon Press
,
New York
, pp.
16
37
.
33.
Cooper
,
M. G.
,
1984
, “
Saturated Nucleate Pool Boiling—A Simple Correlation
,”
First U.K. National Conference on Heat Transfer
,
Leeds, UK
,
July 3–5
, pp.
785
793
.
34.
Cornwell
,
K.
, and
Houston
,
S. D.
,
1994
, “
Nucleate Pool Boiling on Horizontal Tubes: A Convection-Based Correlation
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
303
309
.
35.
Fuerstenau
,
D. W.
,
2002
, “
Equilibrium and Nonequilibrium Phenomena Associated With the Adsorption of Ionic Surfactants at Solid-Water Interfaces
,”
J. Colloid Interface Sci.
,
256
(
1
), pp.
79
90
.
36.
Somasundaran
,
P.
, and
Krishnakumar
,
S.
,
1997
, “
Adsorption of Surfactants and Polymers at the Solid-Liquid Interface
,”
Colloids Surf., A
,
123–124
, pp.
491
513
.
37.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2002
, “
The Influence of Additive Molecular Weight and Ionic Nature on the Pool Boiling Performance of Aqueous Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
483
493
.
38.
Brandrup
,
J.
,
Immergut
,
E. H.
, and
Grulke
,
E. A.
,
2003
,
Polymer Handbook
,
New York
.
39.
Brown
,
W.
, and
Wikström
,
R.
,
1965
, “
Viscosity-Molecular Weight Relation for Cellulose in Cadoxen and a Hydrodynamic Interpretation
,”
Eur. Polym. J.
,
1
(
1
), pp.
1
10
.
40.
Hiemenz
,
P. C.
,
1984
,
Polymer Chemistry
,
Marcel Dekker
,
New York
.
41.
Bhatia
,
R.
, and
Manglik
,
R. M.
,
2014
, “
Scaling and Correlation of the Pseudoplastic Rheology of Aqueous Polymeric Solutions
,”
Thermal-Fluids & Thermal Processing Laboratory
,
University of Cincinnati
,
Cincinnati, OH
, Report No. TFTPL-26.
42.
Chang
,
C.-H.
, and
Franses
,
E. I.
,
1995
, “
Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms
,”
Colloids Surf., A
,
100
, pp.
1
45
.
43.
Hua
,
X. Y.
, and
Rosen
,
M. J.
,
1988
, “
Dynamic Surface Tension of Aqueous Surfactant Solutions—I: Basic Parameters
,”
J. Colloid Interface Sci.
,
124
(
2
), pp.
652
659
.https://www.sciencedirect.com/science/article/pii/0021979788902032?via%3Dihub
44.
Defay
,
R.
, and
Petré
,
G.
,
1971
, “
Dynamic Surface Tension
,”
Surface and Colloid Science
,
E.
Matijevic
, ed.,
Wiley
,
New York
, pp.
27
81
.
45.
Hiemenz
,
P. C.
, and
Rajagopalan
,
R.
,
1997
,
Principles of Colloids and Surface Chemistry
, 3rd ed.,
Marcel Dekker
,
New York
.
46.
Bergles
,
A. E.
,
1988
, “
Fundamentals of Boiling and Evaporation
,”
Two-Phase Flow Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
,
S.
Kakaç
,
Bergles
,
A. E.
, and
Fernandes
,
E. O.
, eds.,
Kluwer
,
The Netherlands
, pp.
159
200
.
47.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis
,
New York
.
48.
Nukiyama
,
S.
,
1934
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
J. Jpn. Soc. Mech. Eng.
,
37
(
206
), pp.
367
374
(translation in Int. J. Heat Mass Transfer,
9
, pp. 1419–1433, 1966).
You do not currently have access to this content.