Pool boiling is postulated as a single-phase heat transfer process with nucleating bubbles providing a liquid pumping mechanism over the heater surface. This results in three fluid streams at the heater surface—outgoing vapor and liquid streams, and an incoming liquid stream. Heat transfer during periodic replacement of the liquid in the influence region around a nucleating bubble is well described by transient conduction (TC) and microconvection (MiC) mechanisms. Beyond this region, free convection (FC) or macroconvection (MaC) contributes to heating of the liquid. A bubble growing on the heater surface derives its latent heat from the surrounding superheated liquid and from the microlayer providing a direct heat conduction path. Secondary evaporation occurs in the bubbles rising in the bulk after departure, and at the free surface. This secondary evaporation does not directly contribute to the heat transfer at the heater surface but provides a means of dissipating liquid superheat. A sonic limit-based model is then presented for estimating the theoretical upper limit for pool boiling heat transfer by considering the three fluid streams to approach their respective sonic velocities. Maximum heat transfer rates are also estimated using this model with two realistic velocities of 1 and 5 m/s for the individual streams and are found to be in general agreement with available experimental results. It is postulated that small bubbles departing at high velocity along with high liquid stream velocities are beneficial for heat transfer. Based on these concepts, future research directions for enhancing pool boiling heat transfer are presented.

References

References
1.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
87
(
1
), pp.
17
29
.
2.
Jakob
,
M.
,
1949
,
Heat Transfer
,
Wiley
,
New York
.
3.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
(
8
), pp.
969
976
.http://hdl.handle.net/1721.1/61431
4.
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1955
, “
Correlation of Maximum Heat Transfer Data for Boiling of Saturated Liquids
,” Massachusetts Institute of Technology, Cambridge, MA, Report No.
6
.https://dspace.mit.edu/handle/1721.1/61480
5.
Kutateladze
,
S. S.
,
1951
, “
A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,”
Izvestia Akademia Nauk, S.S.S.R., Otdelenie Tekhnicheski Nauk
,
4
, pp.
529
536
.
6.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,”
Ph.D. thesis
, University of California, Los Angeles, CA.
7.
Moissis
,
R.
, and
Berensen
,
P. J.
,
1963
, “
On the Hydrodynamic Transitions in Nucleate Boiling
,”
ASME J. Heat Transfer
,
85
(
3
), pp.
221
226
.
8.
Hsu
,
Y. Y.
, and
Graham
,
R. W.
,
1961
, “
An Analytical and Experimental Study of the Thermal Boundary Layer and the Ebullition Cycle in Nucleate Boiling
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA TN-D-594
.https://catalog.hathitrust.org/Record/011449142
9.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
10.
Han
,
C. Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
8
, pp.
887
917
.
11.
Judd
,
R. L.
, and
Hwang
,
K. S.
,
1976
, “
A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
,
98
(
4
), pp.
623
629
.
12.
Sharp
,
R. R.
,
1964
, “
The Nature of Liquid Film Evaporation During Nucleate Boiling
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA TN D-1997
.https://catalog.hathitrust.org/Record/011432862
13.
Hospeti
,
N. B.
, and
Mesler
,
R. B.
,
1965
, “
Deposits Formed Beneath Bubbles During Nucleate Boiling of Radioactive Calcium Sulfate Solutions
,”
AIChE J.
,
11
(
4
), pp.
662
665
.
14.
Jawurek
,
H. H.
,
1969
, “
Simultaneous Determination of Microlayer Geometry and Bubble Growth in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
843
848
.
15.
Cooper
,
M. G.
,
1969
, “
The Microlayer and Bubble Growth in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
915
933
.
16.
Cooper
,
M. G.
, and
Lloyd
,
1969
, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
895
913
.
17.
Ouwerkerk
,
V.
,
1971
, “
The Rapid Growth of a Vapour Bubble at a Liquid- Solid Interface
,”
Int. J. Heat Mass Transfer
,
14
(
9
), pp.
1415
1430
.
18.
Cooper
,
M. G.
, and
Merry
,
J. M. D.
,
1973
, “
A General Expression for the Rate of Evaporation of a Layer of Liquid on a Solid Body
,”
Int. J. Heat Mass Transfer
,
16
(
9
), pp.
1811
1815
.
19.
Graham
,
R. W.
, and
Hendricks
,
R. C.
,
1967
, “
Assessment of Convection, Conduction and Evaporation in Nucleate Boiling
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA TN D-3943
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670015149.pdf
20.
Wayner
,
P. C.
, Jr.
,
Kao
,
Y. K.
, and
LaCroix
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
487
492
.
21.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Wärme- Und Stoffübertragung
,
30
(
2
), pp.
119
125
.
22.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid-Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051501
.
23.
Haider
,
S. I.
, and
Webb
,
R. L.
,
1997
, “
A Transient Micro-Convection Model of Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3675
3688
.
24.
Koffman
,
L. D.
, and
Plesset
,
M. S.
,
1983
, “
Experimental Observations of the Microlayer in Vapor Bubble Growth on a Heated Solid
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
625
632
.
25.
Jung
,
S.
, and
Kim
,
H.
,
2014
, “
An Experimental Method to Simultaneously Measure the Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
73
, pp.
365
375
.
26.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Study of Effect of Contact Angle on Bubble Growth and Wall Heat Transfer During Flow Boiling of Water in a Microchannel
,”
International Heat Transfer Conference
,
Sydney, Australia
,
Aug. 13–18
.
27.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
127
138
.
28.
Mukherjee
,
A.
,
2009
, “
Contribution of Thin Film Evaporation During Flow Boiling Inside Microchannels
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2025
2035
.
29.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
9
(
12
), pp.
245
250
.
30.
Meyers
,
J. G.
,
Yerramilli
,
V. K.
,
Hussey
,
S. W.
,
Yee
,
G. F.
, and
Kim
,
J.
,
2005
, “
Time and Space Resolved Wall Temperature and Heat Flux Measurements During Nucleate Boiling With Constant Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2429
2442
.
31.
Moghaddam
,
S.
, and
Kiger
,
2009
, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of FC-72 Under Saturation Conditions—II: Theoretical Analysis
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1295
1303
.
32.
Moore
,
F. D.
, and
Mesler
,
R. B.
,
1961
, “
The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water
,”
AIChE J.
,
7
(
4
), pp.
620
624
.
33.
Olander
,
R. R.
, and
Watts
,
R. G.
,
1969
, “
An Analytical Expression of Microlayer Thickness in Nucleate Boiling
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
178
180
.
34.
Zou
,
A.
,
Gupta
,
M.
, and
Maroo
,
S. C.
,
2018
, “
Origin, Evolution, and Movement of Microlayer in Pool Boiling
,”
J. Phys. Chem. Lett.
,
9
(
14
), pp.
3863
3869
.
35.
Utaka
,
Y.
,
Kashiwabara
,
Y.
, and
Ozaki
,
M.
,
2013
, “
Microlayer Structure in Nucleate Boiling of Water and Ethanol at Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
222
230
.
36.
Utaka
,
Y.
,
Kashiwabara
,
Y.
,
Ozaki
,
M.
, and
Chen
,
Z.
,
2014
, “
Heat Transfer Characteristics Based on Microlayer Structure in Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
68
, pp.
479
488
.
37.
Chen
,
Z.
, and
Utaka
,
Y.
,
2015
, “
On Heat Transfer and Evaporation Characteristics in the Growth Process of a Bubble With Microlayer Structure During Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
81
, pp.
750
759
.
38.
Chen
,
Z.
,
Haginiwa
,
A.
, and
Utaka
,
Y.
,
2017
, “
Detailed Structure of Microlayer in Nucleate Pool Boiling for Water Measured by Laser Interferometric Method
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
1285
1291
.
39.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
,
New York
.
40.
Derjaguin
,
D.
,
Nerpin
,
S.
, and
Churayev
,
N.
,
1965
, “
Effect of Film Transfer Upon Evaporation of Liquids From Capillaries
,”
Bull. Rilem.
,
29
, pp. 93–98.
41.
Potash
,
M.
, and
Wayner
,
P. C.
, Jr.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1851
1863
.
42.
Panchamgam
,
S. S.
,
Plawsky
,
J. L.
, and
Wayner
,
P. C.
,
2006
, “
Microscale Heat Transfer in an Evaporating Moving Extended Meniscus
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
745
754
.
43.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2016
, “
Contact Line Region Heat Transfer Mechanisms for an Evaporating Interface
,”
Int. J. Heat Mass Transfer
,
96
, pp.
296
306
.
44.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.
45.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.
46.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.
47.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
. Vol.
48.
Dhir
,
V. K.
,
2006
, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task?
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
1
12
.
49.
Demiray
,
F.
, and
Kim
,
J.
,
2004
, “
Microscale Heat Transfer Measurements During Pool Boiling of FC-72: Effect of Subcooling
,”
Int. J. Heat Mass Transfer
, (
14–16
), pp.
3257
3268
.
50.
Jung, S.
, and
Kim, H.
, 2015, “
An Experimental Study on Heat Transfer Mechanisms in the Microlayer Using Integrated Total Reflection, Laser Interferometry and Infrared Thermometry Technique
,”
Heat Transfer Eng.
,
36
(
12
), pp.
1002
1012
.
51.
Jung
,
S.
, and
Kim
,
H.
,
2018
, “
Hydrodynamic Formation of a Microlayer Underneath a Boiling Bubble
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1229
1240
.
52.
Zhang
,
Y.
,
Utaka
,
Y.
, and
Kashiwabara
,
Y.
,
2010
, “
Formation Mechanism and Characteristics of a Liquid Microlayer in Microchannel Boiling System
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122403
.
53.
Sun
,
Y.
,
Guo
,
C.
,
Jiang
,
Y.
,
Wang
,
T.
, and
Zhang
,
L.
,
2018
, “
Transient Film Thickness and Microscale Heat Transfer During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
116
, pp.
458
470
.
54.
Voutsinos
,
C. M.
, and
Judd
,
R. L.
,
1975
, “
Laser Interferometric Investigation of the Microlayer Evaporation Phenomenon
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
88
92
.
55.
Smirnov
,
G. F.
,
1975
, “
Calculation of the “Initial” Thickness of the Microlayer During Bubble Boiling
,”
J. Eng. Phys.
,
28
(
3
), p.
369
.
56.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C. J.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
57.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.
58.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
59.
Rahman
,
M. M.
,
Olceroglu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
−–
11234
.
60.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
171
196
.
61.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.
62.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Enhancement Through Contact Line Augmentation
,”
Appl. Phys. Lett.
,
110
(
20
), p.
204101
.
63.
Rahman
,
M. M.
,
Pollack
,
J.
, and
McCarthy
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
,
5
, p. 13145.
64.
Liang
,
Z.
,
Biben
,
T.
, and
Keblinski
,
2017
, “
Molecular Simulation of Steady-State Evaporation and Condensation: Validity of Schrage Relationships
,”
Int. J. Heat Mass Transfer
,
114
, pp.
105
114
.
65.
Kemme
,
J. E.
,
1969
, “
Ultimate Heat-Pipe Performance
,”
IEEE Trans. Electron Devices
,
ED-16
(
8
), pp.
717
723
.
66.
Busse
,
C. A.
,
1973
, “
Theory of the Ultimate Heat Pipe Limit of Cylindrical Heat Pipes
,”
Int. J. Heat Mass Transfer
,
16
, pp.
109
186
.
67.
Collingham
,
R. E.
, and
Firey
,
J. C.
,
1963
, “
Velocity of Sound Measurements in Wet Steam
,”
IEC Process Des. Dev.
,
2
(
3
), pp.
197
202
.
68.
Del Grosso
,
V. A.
, and
Mader
,
C. W.
,
1972
, “
Speed of Sound in Pure Water
,”
J. Acoust. Soc. Am.
,
52
(
5B
), pp.
1442
1446
.
69.
Lubbers
,
J.
, and
Graaf
,
R.
,
1998
, “
A Simple and Accurate Formula for the Sound Velocity in Water
,”
Ultrasound Med. Biol.
,
24
(
7
), pp.
1065
1068
.
70.
Pais
,
M. R.
,
Chow
,
L. C.
, and
Mahefkey
,
1992
, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
211
219
.
71.
Protich
,
Z.
,
Santhanam
,
K. S. V.
,
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Wong
,
P.
,
2016
, “
Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
E166
E172
.
72.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C. Y.
, and
Su
,
C. Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer
,
109
, pp.
357
366
.
73.
Jaikumar
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Microscale Morphology Effects of Copper-Graphene Oxide Coatings on Pool Boiling Characteristics
,”
ASME J. Heat Transfer
,
139
(
11
), p.
111509
.
74.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling
,”
Sci. Rep.
,
7
, pp.
1
10
.
75.
Kim
,
D. E.
,
Song
,
J.
, and
Kim
,
H.
,
2016
, “
Simultaneous Observation of Dynamics and Thermal Evolution of Irreversible Dry Spot at Critical Heat Flux in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
99
, pp.
409
424
.
76.
Lay
,
J. H.
, and
Dhir
,
V. K.
,
1995
, “
Shape of a Vapor Stem During Nucleate Boiling of Saturated Liquids
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
394
401
.
77.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
78.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett
,
110
(
9
), p.
094107
.
79.
Hayes
,
A.
,
Raghupathi
,
P. A.
,
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2018
, “
Regulating Flow of Vapor to Enhance Pool Boiling
,”
Appl. Therm. Eng.
,
149
, pp.
1044
1051
.
You do not currently have access to this content.