We develop a vapor chamber integrated with a microelectronic packaging substrate and characterize its heat transfer performance. A prototype of vapor chamber integrated printed circuit board (PCB) is fabricated through successful completion of the following tasks: patterning copper micropillar wick structures on PCB, mechanical design and fabrication of condenser, device sealing, and device vacuuming and charging with working fluid. Two prototype vapor chambers with distinct micropillar array designs are fabricated, and their thermal performance tested under various heat inputs supplied from a 2 mm × 2 mm heat source. Thermal performance of the device improves with heat inputs, with the maximum performance of ∼20% over copper plated PCB with the same thickness. A three-dimensional computational fluid dynamics/heat transfer (CFD/HT) numerical model of the vapor chamber, coupled with the conduction model of the packaging substrate is developed, and the results are compared with test data.

References

References
1.
Reay
,
D.
, and
Kew
,
P.
,
2006
,
Heat Pipes: Theory, Design and Applications
,
Elsevier
,
Oxford, UK
.
2.
Take
,
K.
,
Furukawa
,
Y.
, and
Ushioda
,
S.
,
2000
, “
Fundamental Investigation of Roll Bond Heat Pipe as Heat Spreader Plate for Notebook Computers
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
80
85
.
3.
Wang
,
J. C.
,
Wang
,
R. T.
,
Chang
,
T. L.
, and
Hwang
,
D. S.
,
2010
, “
Development of 30Watt High-Power LEDs Vapor Chamber-Based Plate
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3990
4001
.
4.
Go
,
J. S.
,
2005
, “
Quantitative Thermal Performance Evaluation of a Cost-Effective Vapor Chamber Heat Sink Containing a Metal-Etched Microwick Structure for Advanced Microprocessor Cooling
,”
Sens. Actuators, A Phys.
,
121
(
2
), pp.
549
556
.
5.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
, “
Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-Plate and Disk-Shaped Heat Pipes
,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2619
2637
.
6.
Vadakkan
,
U.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2004
, “
Transport in Flat Heat Pipes at High Heat Fluxes From Multiple Discrete Sources
,”
ASME J. Heat Transfer
,
126
(
3
), p.
347
.
7.
Koito
,
Y.
,
Imura
,
H.
,
Mochizuki
,
M.
,
Saito
,
Y.
, and
Torii
,
S.
,
2006
, “
Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1669
1676
.
8.
Xiao
,
B.
, and
Faghri
,
A.
,
2008
, “
A Three-Dimensional Thermal-Fluid Analysis of Flat Heat Pipes
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3113
3126
.
9.
Chiou
,
H. W.
,
Lee
,
Y.-M.
,
Hsiao
,
H.-H.
, and
Cheng
,
L.-C.
,
2017
, “
Thermal Modeling and Design on Smartphones With Heat Pipe Cooling Technique
,”
IEEE/ACM International Conference on Computer-Aided Design
(
ICCAD
),
Irvine, CA
,
Nov. 13–16
, pp.
482
489
.
10.
Benson
,
D. A.
,
Mitchell
,
R. T.
,
Tuck
,
M. R.
,
Adkins
,
D. R.
, and
Palmer
,
D. W.
,
1996
, “
Micro-Machined Heat Pipes in Silicon MCM Substrates
,”
IEEE
Multi-Chip Module Conference
,
Santa Cruz, CA
,
Feb. 6–7
, pp.
127
129
.
11.
Jones
,
K.
,
Cao
,
Y.
, and
Gao
,
M.
,
2002
, “
Development of Micro Heat Pipes Embedded in Laminate Substrates for Enhanced Thermal Management (TM) for Printed Wiring Boards (PWBs)
,” AFRL, Wright-Patterson Air Force Base, OH, Report No. AFRL-PR-WP-TR-2003-2011.
12.
Wits
,
W. W.
, and
Vaneker
,
T. H. J.
,
2010
, “
Integrated Design and Manufacturing of Flat Miniature Heat Pipes Using Printed Circuit Board Technology
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
398
408
.
13.
Fan
,
A.
,
Bonner
,
R.
,
Sharratt
,
S.
, and
Ju
,
Y. S.
,
2012
, “
An Innovative Passive Cooling Method for High Performance Light-Emitting Diodes
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 18–22
, pp.
319
324
.
14.
Cho
,
S.
,
Tummala
,
R.
, and
Joshi
,
Y.
,
2018
, “
Capillary Performance of Micropillar Arrays in Different Arrangements
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
2
), pp.
1
17
.
15.
Cho
,
S.
,
2018
, “
Thermal Performance Enhancement of Packaging Substrates with Integrated Vapor Chamber
,” Ph.D. thesis, Georgia Tech, Atlanta, GA.
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
17.
Omega Engineering
,
1998
, “
Series CL120 Cool and Heat Source User's Manual
,” Omega, Stamford, CT, accessed Dec. 1, 2108, https://www.omega.com/Manuals/manualpdf/M2931.pdf
18.
Adera
,
S.
,
Antao
,
D.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Design of Micropillar Wicks for Thin-Film Evaporation
,”
Int. J. Heat Mass Transfer
,
101
, pp.
280
294
.
19.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.
20.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.
21.
Famouri
,
M.
,
Carbajal
,
G.
, and
Li
,
C.
,
2014
, “
Transient Analysis of Heat Transfer and Fluid Flow in a Polymer-Based Micro Flat Heat Pipe With Hybrid Wicks
,”
Int. J. Heat Mass Transfer
,
70
, pp.
545
555
.
22.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
, “
A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
153
168
.
You do not currently have access to this content.