In relation to intravitreal drug delivery, predictive mathematical models for drug transport are being developed, and to effectively implement these for retinal delivery, the information on biophysical properties of various ocular tissues is fundamentally important. It is therefore necessary to accurately measure the diffusion coefficient of drugs and drug surrogates in the vitreous humor. In this review, we present the studies conducted by various researchers on such measurements over the last several decades. These include imaging techniques (fluorescence and magnetic resonance imaging (MRI)) that make use of introducing a contrast agent or a labeled drug into the vitreous and tracking its diffusive movement at various time points. A predictive model for the same initial conditions when matched with the experimental measurements provides the diffusion coefficient, leading to results for various molecules ranging in size from approximately 0.1 to 160 kDa. For real drugs, the effectiveness of this system depends on the successful labeling of the drugs with suitable contrast agents such as fluorescein and gadolinium or manganese so that fluorescence or MR imagining could be conducted. Besides this technique, some work has been carried out using the diffusion apparatus for measuring permeation of a drug across an excised vitreous body from a donor chamber to the receptor by sampling assays from the chambers at various time intervals. This has the advantage of not requiring labeling but is otherwise more disruptive to the vitreous. Some success with nanoparticles has been achieved using dynamic light scattering (DLS), and presently, radioactive labeling is being explored.

References

References
1.
Duvvuri
,
S.
,
Majumdar
,
S.
, and
Mitra
,
A.
,
2003
, “
Drug Delivery to the Retina: Challenges and Opportunities
,”
Expert Opin. Biol. Ther.
,
3
(
1
), pp.
45
56
.
2.
Penkova
,
A.
,
Rattanakijsuntorn
,
K.
,
Sadhal
,
S.
,
Tang
,
Y.
,
Moats
,
R.
,
Hughes
,
P. M.
,
Robinson
,
M. R.
, and
Lee
,
S. S.
,
2014
, “
A Technique for Drug Surrogate Diffusion Coefficient Measurement by Intravitreal Injection
,”
Int. J. Heat Mass Transfer
,
70
, pp.
504
514
.,"
3.
Lee
,
T.
, and
Robinson
,
J.
,
2004
, “
Drug Delivery to the Posterior Segment of the Eye III: The Effect of Parallel Elimination Pathway on the Vitreous Drug Level After Subconjunctival Injection
,”
J. Ocul. Pharmacol. Ther.
,
20
(
1
), pp.
55
64
.
4.
Haghjou
,
N.
,
Abdekhodaie
,
M.
,
Cheng
,
Y.
, and
Saadatmand
,
M.
,
2011
, “
Computer Modeling of Drug Distribution After Intravitreal Administration
,”
World Acad. Sci. Eng. Technol.
,
77
, pp.
706
716
.https://waset.org/publications/103/computer-modeling-of-drug-distribution-after-intravitreal-administration
5.
Stay
,
M.
,
Xu
,
J.
,
Randolph
,
T.
, and
Barocas
,
V.
,
2003
, “
Computer Simulation of Convective and Diffusive Transport of Controlled-Release Drugs in the Vitreous Humor
,”
Pharm. Res
,
20
(
1
), pp.
96
102
.
6.
Balachandran
,
R.
,
2010
, “
Computational Modeling of Drug Transport in the Posterior Eye
,” Ph.D. dissertation, University of Minnesota, Minneapolis, MN.
7.
Balachandran
,
R.
, and
Barocas
,
V.
,
2008
, “
Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow
,”
Pharma. Res.
,
25
(
11
), pp.
2685
2696
.
8.
Kathawate
,
J.
, and
Acharya
,
S.
,
2008
, “
Computational Modeling of Intravitreal Drug Delivery in the Vitreous Chamber With Different Vitreous Substitutes
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5598
5609
.
9.
Kim
,
S.
,
Lutz
,
R.
,
Wang
,
N.
, and
Robinson
,
M.
,
2007
, “
Transport Barriers in Transscleral Drug Delivery for Retinal Diseases
,”
Ophthalmic Res.
,
39
(
5
), pp.
244
254
.
10.
Ohtori
,
A.
, and
Tojo
,
K.
,
1994
, “
In Vivo/In Vitro Correlation of Intravitreal Delivery of Drugs With the Help of Computer Simulation
,”
Biol. Pharm. Bull.
,
17
(
2
), pp.
283
290
.
11.
Li
,
S. K.
,
Hao
,
J.
,
Liu
,
H.
, and
Lee
,
J. H.
,
2012
, “
MRI Study of Subconjuctival and Intravitreal Injections
,”
J. Pharm. Sci.
,
101
(
7
), pp.
2353
2363
.
12.
Li
,
S. K.
,
Lizak
,
M. J.
, and
Jeong
,
E.
,
2008
, “
MRI in Ocular Drug Delivery
,”
NMR Biomed.
,
21
(
9
), pp.
941
956
.
13.
Siggers
,
J.
, and
Ethier
,
C.
,
2012
, “
Fluid Mechanics of the Eye
,”
Ann. Rev. Fluid Mech.
,
44
(
1
), pp.
347
372
.
14.
Vafai
,
K.
,
2011
,
Porous Media: Applications in Biological Systems and Biotechnology
,
CRC Press
, Boca Raton, FL.
15.
Mukundakrishnan
,
K.
, and
Ayyaswamy
,
P.
,
2011
, “
Fluid Mechanics: Transport and Diffusion Analyses as Applied in Biomaterials Studies
,”
Comprehensive Biomaterials
,
P.
Ducheyne
,
K.
Healy
,
D.
Hutmacher
,
D.
Grainger
, and
C.
Kirkpatrick
, eds., Vol.
3
,
Elsevier
, Amsterdam, The Netherlands, pp.
133
153
.
16.
Khanafer
,
K.
, and
Vafai
,
K.
,
2006
, “
The Role of Porous Media in Biomedical Engineering as Related to Magnetic Resonance Imaging and Drug Delivery
,”
Heat Mass Transfer
,
42
(
10
), pp.
939
953
.
17.
Truskey
,
G.
,
Yuan
,
F.
, and
Katz
,
D.
,
2009
,
Transport Phenomena in Biological Systems
,
2nd ed.
,
Pearson Prentice Hall
, New York.
18.
Cunha-Vaz
,
J.
, and
Maurice
,
D.
,
1969
, “
Fluorescein Dynamics in the Eye. Documenta Ophthalmologica
,”
Adv. Ophthalmol.
,
26
, p.
61
.
19.
Kaiser
,
R. J.
, and
Maurice
,
D. M.
,
1964
, “
The Diffusion of Fluorescein in the Lens
,”
Exper. Eye Res.
,
3
(
2
), pp.
156
165
.
20.
Araie
,
M.
, and
Maurice
,
D. M.
,
1991
, “
The Loss of Fluorescein, Fluorescein Glucuronide and Fluorescein Isothiocyanate Dextran From the Vitreous by the Anterior and Retinal Pathways
,”
Exper. Eye Res.
,
52
(
1
), pp.
27
39
.
21.
Garlick
,
D.
, and
Renkin
,
E.
,
1970
, “
Transport of Large Molecules From Plasma to Interstitial Fluid and Lymph in Dogs
,”
Amer. J. Physiol.
,
219
(
6
), pp.
1595
1605
.
22.
Maurice
,
D. M.
,
1987
, “
Flow of Water Between Aqueous and Vitreous Compartments in the Rabbit Eye
,”
Amer. J. Physiol.
,
252
, pp.
Fl04
Fl08
.https://www.physiology.org/doi/pdf/10.1152/ajprenal.1987.252.1.f104
23.
Larsen
,
J.
,
Lund-Andersen
,
H.
, and
Krogsaa
,
B.
,
1983
, “
Transient Transport Across the Blood-Retinal Barrier
,”
Bull. Math. Biol.
,
45
(
5
), pp.
749
758
.
24.
Lund-Andersen
,
H.
,
Krogsaa
,
B.
, and
Jensen
,
P. K.
,
1982
, “
Fluorescein in Human Plasma In Vivo
,”
Acta Ophthalmol.
,
60
(
5
), pp.
709
716
.
25.
Lund-Andersen
,
H.
,
Krogsaa
,
B.
,
la Cour
,
M.
, and
Larsen
,
J.
,
1985
, “
Quantitative Vitreous Fluorophotometry Applying a Mathematical Model of the Eye
,”
Invest. Ophthalmol. Vis. Sci.
,
26
, pp.
698
710
.http://iovs.arvojournals.org/data/journals/iovs/933354/698.pdf
26.
Li
,
S.
,
Jeong
,
A.
, and
Hastings
,
M.
,
2004
, “
Magnetic Resonance Imaging Study of Current and Ion Delivery Into the Eye During Transscleral and Transcorneal Iontophoresis
,”
Invest. Ophthalmol. Vis. Sci.
,
45
(
4
), pp.
1224
1231
.
27.
Molokhia
,
S.
,
Jeong
,
E.-K.
,
Higuchi
,
W.
, and
Li
,
S.
,
2009
, “
Transscleral Iontophoretic and Intravitreal Delivery of a Macromolecule: Study of Ocular Distrubution In Vivo and Postmortem With MRI
,”
Exper. Eye Res.
,
88
(
3
), pp.
418
425
.
28.
Gordon
,
M. J.
,
Chu
,
K. C.
,
Margaritis
,
A.
,
Martin
,
A. J.
,
Ethier
,
C. R.
, and
Rutt
,
B. K.
,
1999
, “
Measurement of Gd-DTPA Diffusion Through PVA Hydrogel Using a Novel Magnetic Resonance Imaging Method
,”
Biotech. Bioeng.
,
65
(
4
), pp.
459
467
.
29.
Kim
,
H.
,
Lizak
,
M. J.
,
Tansey
,
G.
,
Csaky
,
K. G.
,
Robinson
,
M. R.
,
Yuan
,
P.
,
Wang
,
N. S.
, and
Lutz
,
R. J.
,
2005
, “
Study of Ocular Transport of Drugs Released From an Intravitreal Implant Using Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
150
164
.
30.
Rattanakijsuntorn
,
K.
,
Penkova
,
A.
, and
Sadhal
,
S. S.
,
2018
, “
Mass Diffusion Coefficient Measurement for Vitreous Humor Using FEM and MRI
,”
IOP Conf. Ser.: Mat. Sci. Engin.
,
297
, p.
012024
.
31.
Liang
,
Z.-P.
, and
Lauterberg
,
P.
,
2000
,
Principles of Magnetic Resonance Imaging: A Signal Processing Perspective
(
IEEE Press Series in Biomedical Engineering
), Wiley, Hoboken, NJ.
32.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), p.
112
.
33.
Forsythe
,
G. E.
,
Malcolm
,
M. A.
, and
Moler
,
C. B.
,
1977
,
Computer Methods for Mathematical Computations
,
Prentice Hall
,
Englewood Cliffs, NJ
.
34.
Brent
,
R.
,
1973
,
Algorithms for Minimization Without Derivatives
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Penkova
,
A. N.
,
Rattanakijsuntorn
,
K.
,
Khoobyar
,
A.
,
Moats
,
R.
,
Fraser
,
S.
,
Humayun
,
M. S.
, and
Sadhal
,
S. S.
,
2018
, “
Gadolinium-Immunoglobilin Study for Diffusion Coefficient Measurement of Bovine Vitreous Humor for Drug Delivery Modeling
,”
Invest. Ophthalmol. Vis. Sci.
,
59
(9), p. 4457.https://iovs.arvojournals.org/article.aspx?articleid=2692077
36.
Tojo
,
K.
,
Nakagawa
,
K.
,
Morita
,
Y.
, and
Ohtori
,
A.
,
1999
, “
A Pharmacokinetic Model of Intravitreal Delivery of Ganciclovir
,”
Eur. J. Pharma. Biopharma.
,
47
(
2
), pp.
99
104
.
37.
Gisladottir
,
S.
,
Loftsson
,
T.
, and
Stefansson
,
E.
,
2009
, “
Diffusion Characteristics of Vitreous Humour and Saline Solution Follow the Stokes Einstein Equation
,”
Graefe's Arch. Clin. Exper. Ophthalmol. (Albrecht Von Graefes Archiv Für Klinische Und Experimentelle Ophthalmologie)
,
247
(
12
), pp.
1677
1684
.
38.
Nishimura
,
Y.
,
Hayashi
,
H.
,
Oshima
,
K.
, and
Iwata
,
S.
,
1986
, “
Alteration of Diffusion Velocity of Fluorescein-Na in Dependence on Vitreous Liquefaction
,”
Jpn. J. Ophthalmol.
,
90
(
11
), pp.
1313
1316
.https://www.ncbi.nlm.nih.gov/pubmed/3825759?report=abstract
39.
Sebag
,
J.
,
Ansari
,
R.
, and
Suh
,
K.
,
2007
, “
Pharmacologic Vitreolysis With Microplasmin Increases
,”
Graefe's Arch. Clin. Exper. Ophthalmol.
,
245
(
4
), pp.
576
580
.
40.
Gillis
,
A.
,
Gray
,
M.
, and
Burstein
,
D.
,
2002
, “
Relaxivity and Diffusion of Gadolinium Agents in Cartilage
,”
Magn. Reson. Med.
,
48
(
6
), pp.
1068
1071
.
You do not currently have access to this content.