Recently, two-phase cryogenic flow boiling data in liquid nitrogen (LN2) and liquid hydrogen (LH2) were compared to the most popular two-phase correlations, as well as correlations used in two of the most widely used commercially available thermal/fluid design codes in Hartwig et al. (2016, “Assessment of Existing Two Phase Heat Transfer Coefficient and Critical Heat Flux on Cryogenic Flow Boiling Quenching Experiments,” Int. J. Heat Mass Transfer, 93, pp. 441–463). Results uncovered that the correlations performed poorly, with predictions significantly higher than the data. Disparity is primarily due to the fact that most two-phase correlations are based on room temperature fluids, and for the heating configuration, not the quenching configuration. The penalty for such poor predictive tools is higher margin, safety factor, and cost. Before control algorithms for cryogenic transfer systems can be implemented, it is first required to develop a set of low-error, fundamental two-phase heat transfer correlations that match available cryogenic data. This paper presents the background for developing a new set of quenching/chilldown correlations for cryogenic pipe flow on thin, shorter lines, including the results of an exhaustive literature review of 61 sources. New correlations are presented which are based on the consolidated database of 79,915 quenching points for a 1.27 cm diameter line, covering a wide range of inlet subcooling, mass flux, pressure, equilibrium quality, flow direction, and even gravity level. Functional forms are presented for LN2 and LH2 chilldown correlations, including film, transition, and nucleate boiling, critical heat flux, and the Leidenfrost point.

References

References
1.
Kirillov
,
P. L.
,
Smogalev
,
I. P.
,
Ivacshkevitch
,
A. A.
,
Vinogradov
,
V. N.
,
Sudnitsina
,
M. O.
, and
Mitrofanova
,
T. V.
,
1996
, “
The Look-Up Table for Heat Transfer Coefficient in Post-Dryout Region for Water Flowing in Tubes
,”
Institute of Physics and Power Engineering
,
Obninsk, Russia
.
2.
Leung
,
L. K. H.
,
Hammouda
,
N.
, and
Groeneveld
,
D. C.
,
1997
, “
A Look-Up Table for Film Boiling Heat Transfer Coefficients in Tubes With Vertical Upward Flow
,” Eighth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics,
Kyoto
,
Japan
, Sept. 30–Oct. 4, pp.
671
678
.
3.
Burggraf
,
O. R.
,
1964
, “
An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications
,”
ASME J. Heat Transfer
,
86
(3), pp.
373
380
.
4.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
238
250
.
5.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II: Two-Phase Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1239
1256
.
6.
Kim
,
S.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 2: Heat Transfer Results and Correlation Technique
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
984
994
.
7.
Kim
,
S.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
627
652
.
8.
Kim
,
S.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3246
3261
.
9.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Mini/Micro-Channel Saturated Flow Boiling
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
718
734
.
10.
Kim
,
S.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Pressure Drop in Adiabatic, Condensing, and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
74
97
.
11.
Hall
,
D. D.
, and
Mudawar
,
I.
,
1999
, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling—II: High-CHF Database and Design Equations
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1429
1456
.
12.
Hall
,
D. D.
, and
Mudawar
,
I.
,
2000
, “
Critical Heat Flux (CHF) for Water Flow in Tubes—I: Compilation and Assessment of World CHF Data
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2573
2640
.
13.
Hall
,
D. D.
, and
Mudawar
,
I.
,
2000
, “
Critical Heat Flux (CHF) for Water Flow in Tubes—II: Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2605
2640
.
14.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part I: Dryout Incipience Quality
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1226
1238
.
15.
Kim
,
S.
, and
Mudawar
,
I.
,
2014
, “
Theoretical Model for Local Heat Transfer Coefficient for Annular Flow Boiling in Circular Mini/Micro Channels
,”
Int. J. Heat Mass Transfer
,
73
, pp.
731
742
.
16.
Cross
,
M. F.
,
Majumdar
,
A. K.
, Jr.
,
Bennett
,
J. C.
, and
Malla
,
R. B.
,
2002
, “
Model of Chilldown in Cryogenic Transfer Lines
,”
J. Spacecr. Rockets
,
39
(
2
), pp.
284
289
.
17.
Hartwig
,
J. W.
,
Darr
,
S. R.
, and
Chung
,
J. N.
,
2017
, “
Development of Universal Two-Phase Heat Transfer Correlations for Cryogenic Transfer Line Chilldown
,”
AIAA
Paper No. AIAA 2017-0904.
18.
Hartwig
,
J. W.
,
Asensio
,
A.
, and
Darr
,
S. R.
,
2016
, “
Assessment of Existing Two Phase Heat Transfer Coefficient and Critical Heat Flux on Cryogenic Flow Boiling Quenching Experiments
,”
Int. J. Heat Mass Transfer
,
93
, pp.
441
463
.
19.
Darr
,
S. R.
,
Hu
,
H.
,
Hartwig
,
J. W.
,
Majumdar
,
A.
,
Leclair
,
A.
, and
Chung
,
J. N.
,
2016
, “
An Experimental Study on Terrestrial Cryogenic Transfer Line Chilldown I. Effect of Mass Flux, Equilibrium Quality, and Inlet Subcooling
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1225
1242
.
20.
Darr
,
S. R.
,
Hu
,
H.
,
Glikin
,
N.
,
Hartwig
,
J. W.
,
Majumdar
,
A.
,
Leclair
,
A.
, and
Chung
,
J. N.
,
2016
, “
An Experimental Study on Terrestrial Cryogenic Transfer Line Chilldown II. Effect of Flow Direction With respect to Gravity and New Correlation Set
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1243
1260
.
21.
Bromley
,
L. A.
,
LeRoy
,
N. R.
, and
Robbers
,
J. A.
,
1953
, “
Heat Transfer in Forced Convection Film Boiling
,”
Ind. Eng. Chem.
,
45
(
12
), pp.
2639
2646
.
22.
Groeneveld
,
D. C.
, and
Delorme
,
G. G. J.
,
1976
, “
Prediction of Thermal Non-Equilibrium in the Post-Dryout Regime
,”
Nucl. Eng. Des.
,
36
(
1
), pp.
17
26
.
23.
Groeneveld
,
D. C.
,
1993
, “
A Review of Inverted Annular and Low Quality Film Boiling
,”
Multiphase Sci. Technol.
,
7
(
1–4
), pp.
327
365
.
24.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
Trans. Am. Soc. Mech. Eng.
,
80
, pp.
711
720
.
25.
Gambill
,
W. R.
,
1963
, “
Generalized Prediction of Burnout Heat Flux for Flowing, Subcooled, Wetting Liquids
,”
Chem. Eng. Prog. Symp.
,
59
, pp.
71
87
.
26.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.
27.
Miropolskii
,
Z. L.
,
1963
, “
Heat Transfer in Film Boiling of a Steam-Water Mixture in Steam Generating Tubes
,”
Teploenergetika
,
10
, pp.
49
52
.
28.
Hartwig
,
J. W.
, and
Vera
,
J.
,
2016
, “
Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line
,”
J. Thermophys. Heat Transfer
,
30
(
2
), pp.
403
409
.
29.
Bergles
,
A. E.
, and
Thompson
,
W. G.
,
1970
, “
The Relationship of Quench Data to Steady-State Pool Boiling Data
,”
Int. J. Heat Mass Transfer
,
13
(
1
), pp.
55
68
.
30.
Peyayopanakul
,
W.
, and
Westwater
,
J. W.
,
1978
, “
Evaluation of the Unsteady-State Quenching Method for Determining Boiling Curves
,”
Int. J. Heat Mass Transfer
,
21
(11), pp.
1473
1445
.
31.
Bui
,
T. D.
, and
Dhir
,
V. K.
,
1985
, “
Transition Boiling Heat Transfer on a Vertical Surface
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
756
763
.
32.
Liaw
,
S. P.
, and
Dhir
,
V. K.
,
1986
, “
Effect of Surface Wetability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Eighth International Heat Transfer Conference,
San Francisco, CA, Aug. 17–22, pp.
2013
2036.
33.
Hartwig
,
J. W.
, and
Styborski
,
J.
,
2015
, “
Flow Visualization and Stream Temperature Measurement of Liquid Hydrogen Line Chill down Experiments
,”
ASME J. Heat Transfer
,
137
(
2
), p.
020904
.
34.
Shah
,
M. M.
,
1984
, “
Prediction of Heat Transfer During Boiling of Cryogenic Fluids Flowing in Tubes
,”
Cryogenics
,
24
(
5
), pp.
231
236
.
35.
Hartwig
,
J. W.
,
Hu
,
H.
,
Styborski
,
J.
, and
Chung
,
J.
,
2015
, “
Comparison of Cryogenic Flow Boiling in Liquid Nitrogen and Liquid Hydrogen
,”
Int. J. Heat Mass Transfer
,
88
, pp.
662
673
.
36.
Burke
,
J. C.
,
Byrnes
,
W. R.
,
Post
,
A. H.
, and
Ruccia
,
F. E.
,
1960
, “
Pressurized Cooldown of Cryogenic Transfer Lines
,”
Advances in Cryogenic Engineering
, Vol. 4, Springer. Berlin, pp.
378
394
.
37.
Drake
,
E. M.
,
Ruccia
,
F. E.
, and
Ruder
,
J. M.
,
1960
, “
Pressurized Cool-Down of a Cryogenic Liquid Transfer System Containing Vertical Test Sections
,”
Advances in Cryogenic Engineering
, Vol. 6, Springer, Berlin, pp.
323
333
.
38.
Richards
,
R. J.
,
Steward
,
W. G.
, and
Jacobs
,
R. B.
,
1960
,
Transfer of Liquid Hydrogen Through Uninsulated Lines
,
Springer
,
Boston, MA
.
39.
Bronson
,
J. C.
,
Edeskuty
,
F. J.
,
Fretwell
,
J. H.
,
Hammel
,
E. F.
,
Keller
,
W. E.
,
Meier
,
K. L.
,
Schuch
,
A. F.
, and
Willis
,
W. L.
,
1961
, “
Problems in Cool-Down of Cryogenic Systems
,”
Advances in Cryogenic Engineering
, Vol. 7, Springer, Berlin, pp.
198
205
.
40.
Ellerbrock
,
H. H.
,
Livingood
,
J. N. B.
, and
Straight
,
D. M.
,
1962
, “
Fluid-Flow and Heat-Transfer Problems in Nuclear Rockets
,” National Aeronautics and Space Administration, Washington, DC, NASA Technical Report No. SP-20.
41.
Straight
,
D. M.
,
1963
, “
Heat-Transfer and Flow Data With Cryogenic Hydrogen for Nuclear Rocket System Design
,” ASHRAE Cryogenic Symposium,
New York
.
42.
Watt
,
J. J.
,
1966
, “
Analysis of Hydrogen Flow Characteristics at Subcritical Pressures
,”
Nuclear Rocket Technology Conference
, Cleveland, OH, Apr. 19–20, No. NASA-SP-123.
43.
Chi
,
J. W. H.
,
1963
, “
Fluid Flow and Transient Heat Transfer of Gaseous Hydrogen at Low Temperatures
,” Westinghouse Electric Corp., Pittsburgh, PA, Report No. WANL-TMI-344.
44.
Chi
,
J. W. H.
,
1964
, “
Inefficiency of Film Boiling Heat Transfer and Effect on Reactor Start-Up
,” Westinghouse Electric Corp., Pittsburgh, PA, Report No.
WANL-TME-695
.https://www.osti.gov/servlets/purl/4263694-xngFNf/
45.
Chi
,
J. W. H
,
1964
, “
Forced Convection Boiling Heat Transfer to Hydrogen
,” Report No. WANL-TNR-154.
46.
Chi
,
J. W. H.
,
1966
, “
Forced Convective Boiling Heat Transfer to Hydrogen
,”
J. Spacecr.
,
3
(
1
), pp.
150
152
.
47.
Chi
,
J. W. H.
,
1964
, “
Effect of Mist Flow on Cool-Down Temperatures and Cool-Down Time
,” Westinghouse Electric Corp., Pittsburgh, PA, Report No. WANL-TME-794.
48.
Chi
,
J. W. H.
,
1964
, “
Cooldown Temperatures and Cooldown Time During Mist Flow
,”
Advances in Cryogenic Engineering
, Springer, Berlin, Vol. 10, pp.
330
340
.
49.
Chi
,
J. W. H.
,
1967
, “
Slug Flow and Film Boiling of Hydrogen
,”
J. Spacecr.
,
4
(
10
), pp.
1329
1332
.
50.
Chi
,
J. W. H.
, and
Vetere
,
A. M.
,
1964
, “
Two-Phase Flow During Transient Boiling of Hydrogen and Determination of Nonequilibrium Vapor Fractions
,”
Advances in Cryogenic Engineering
, Vol. 9, Springer, Boston, MA, pp.
243
253
.
51.
Campi
,
F. A.
,
Chi
,
J. W.
,
DeZubay
,
E. A.
,
Holmgren
,
J. D.
, and
Vetere
,
A. M.
,
1963
, “
Transient Two-Phase Heat Transfer and Flow Characteristics of Liquid Hydrogen
,” Westinghouse Electric Corp., Pittsburgh, PA, Report No. WANL-TNR-102.
52.
Chi
,
J. W. H.
,
Edmiston
,
J. M.
, and
Hansen
,
O. R.
,
1964
, “
Effect of Vertical Flow at Low Flowrates on Transient Two-Phase Flow and Boiling Heat Transfer
,” Westinghouse Electric Corp., Pittsburgh, PA, Report No. WANL-TME-795.
53.
Liebenberg
,
D. H.
,
1965
, “
Cooldown of Cryogenic Transfer Lines
,” Los Alamos Scientific Laboratory, Los Alamos, NM, Report No. LA-3426-MS.
54.
Liebenberg
,
D. H.
,
Novak
,
J. K.
, and
Edeskuty
,
F. J.
,
1967
, “
Cooldown of Cryogenic Transfer Systems
,”
AIAA
Paper No. 67-475.
55.
Brennan
,
J. A.
,
Brentari
,
E. G.
,
Smith
,
R. V.
, and
Steward
,
W. G.
,
1966
, “
Cooldown of Cryogenic Transfer Lines
,” National Bureau of Standards, Boulder, CO, Report No. 9264.
56.
Steward
,
W. G.
,
Smith
,
R. V.
, and
Brennan
,
J. A.
,
1967
, “
Cooldown Time for Simple Cryogenic Pipelines
,”
Dev. Mech.
,
4
, pp.
1513
1525
.
57.
Steward
,
W. G.
,
1968
, “
Transient Flow of Cryogenic Fluids
,” Ph.D. thesis, Colorado State University, Fort Collins, CO.
58.
Steward
,
W. G.
,
Smith
,
R. V.
, and
Brennan
,
J. A.
,
1970
, “
Cooldown Transients in Cryogenic Transfer Lines
,”
Advances in Cryogenic Engineering
, Vol. 15, Springer, Berlin, pp.
354
363
.
59.
Schwartz
,
M. H.
, and
Commander
,
J. C.
,
1966
, “
Cooldown of Large-Diameter Liquid Hydrogen and Liquid Oxygen Lines
,” AeroJet-General Corporation, Sacramento, CA, Technical Report No.
NASA-CR-54809
.https://ntrs.nasa.gov/search.jsp?R=19660015957
60.
Koshkin
,
V. K.
,
Kalinin
,
E. K.
,
Yarkho
,
S. A.
,
Kostyuk
,
V. V.
,
Berlin
,
I. I.
, and
Kochelayev
,
Y. S.
,
1969
, “
Film Boiling of Subcooled Liquid Nitrogen in Turbulent Flow
,”
Heat Transfer
,
1
, pp.
113
121
.
61.
Kalinin
,
E. K.
,
Koshkin
,
V. K.
,
Yarkho
,
S. R.
,
Berlin
,
I. I.
,
Kochelaev
,
Y. S.
, and
Kostyuk
,
V. V.
,
1969
, “
Investigation of the Crisis of Film Boiling in Channels
,”
Two-Phase Flow and Heat Transfer in Rod Bundles, American Society of Mechanical Engineers
, New York, pp. 89–94.
62.
Kalinin
,
E. K.
,
Koshkin
,
V. K.
,
Yarkho
,
S. R.
,
Berlin
,
I. I.
,
Kochelaev
,
Y. S.
,
Kostyuk
,
V. V.
,
Korolev
,
A. L.
, and
Sdobnov
,
G. N.
,
1970
, “
Investigation of Film Boiling in Tubes With Subcooled Nitrogen Flow
,”
Moscow Aviation Institute
,
Moscow, Russia
.
63.
Kalinin
,
E. K.
,
Berlin
,
I. I.
,
Kostyuk
,
V. V.
,
Kochelsev
,
Y. S.
, and
Yarkho
,
S. A.
,
1972
, “
Heat Transfer During Film Boiling of a Subcooled Liquid Under Conditions of Forced Flow Through Channels
,”
Inzh.-Fiz. Zh.
,
22
, pp.
610
633
.
64.
Plummer
,
D. N.
,
1974
, “
Post Critical Heat Transfer to Flowing Liquid in a Vertical Tube
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
65.
Chen
,
Y.
,
2011
, “
Heat Transfer in Film Boiling of Flowing Water
,”
Proceedings: Theoretical Analysis, Experimental Investigations and Industrial Systems
,
InTech
, Rijeka, Croatia, pp. 235–260.
66.
Illoeje
,
O. C.
,
Plummer
,
D. N.
, and
Rohsenow
,
W. M.
,
1972
, “
Transition From Film Boiling to Nucleate Boiling in Forced Convection Vertical Flow
,” Engineering Projects Laboratory, Cambridge, MA, Report No.
DSR 72718-78
.https://www.researchgate.net/publication/35793669_Transition_from_film_boiling_to_nucleate_boiling_in_forced_convection_vertical_flow
67.
Illoeje
,
O. C.
,
1974
, “
A Study of Wall Rewet and Heat Transfer in Dispersed Vertical Flow
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/16435
68.
Durga Prasad
,
K. A.
,
Srinivasan
,
K.
, and
Krishna Murthy
,
M. V.
,
1974
, “
Cool-Down of Foam Insulated Cryogenic Transfer Lines
,”
Cryogenics
,
14
(
11
), pp.
615
617
.
69.
Srinivasan
,
K.
,
Seshagiri Rao
,
V.
, and
Krishna Murthy
,
M. V.
,
1974
, “
Analytical and Experimental Investigation on Cool-Down of Short Cryogenic Transfer Lines
,”
Cryogenics
,
14
(
9
), pp.
489
494
.
70.
Krishna Murthy
,
M. V.
,
Srinivasa Murthy
,
S.
,
Srinivasan
,
K.
, and
Kanniah
,
M.
,
1976
, “
Cool-Down Studies on Vacuum Insulated Cryogenic Transfer Lines
,”
Cryogenics
,
16
(
7
), pp.
409
412
.
71.
Krishna Murthy
,
M. V.
,
Chandra
,
R.
,
Jacob
,
S.
,
Kasthurirengan
,
S.
, and
Karunanithi
,
R.
,
1996
, “
Experimental Studies on Cool-Down and Mass Flow Characteristics of a Demountable Liquid Nitrogen Transfer Line
,”
Cryogenics
,
36
(
6
), pp.
435
441
.
72.
McGee
,
T. L.
,
1990
, “
An Experimental Study of a Vertical Cooldown Line with LN2
,” Master's thesis, University of Tennessee, Knoxville, TN.
73.
Hedayatpour
,
A.
, and
Antar
,
B.
,
1990
, “
Analytical and Numerical Investigation of Cryogenic Transfer Line Chilldown
,”
AIAA
Paper No. 90-2373.
74.
Sathasivam
,
K.
,
1991
, “
Cryogenic Line Quench Experiment in Microgravity
,”
Master's thesis
, University of Tennessee, Knoxville, TN.https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.co.in/&httpsredir=1&article=4712&context=utk_gradthes
75.
Hedayatpour
,
A.
,
Antar
,
B. N.
, and
Kawaji
,
M.
,
1993
, “
Cool-Down of a Vertical Line With Liquid Nitrogen
,”
J. Thermophys. Heat Transfer
,
7
(
3
), pp.
426
434
.
76.
Antar
,
B. N.
,
1996
, “
Gas-Liquid, Two Phase Flow Dynamics in Low Gravity
,”
AIAA
Paper No. 96-204.
77.
Antar
,
B. N.
, and
Collins
,
F. G.
,
1989
, “
Low Gravity Transfer Line Chilldown
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-199690
.https://ntrs.nasa.gov/search.jsp?R=19960022976
78.
Antar
,
B. N.
, and
Collins
,
F. G.
,
1996
, “
Flow Boiling in Low Gravity Environment
,”
Heat Transfer
,
92
, pp.
32
44
.
79.
Antar
,
B. N.
, and
Collins
,
F. G.
,
1996
, “
Vertical Line Quench in Low Gravity—Flow Patterns
,”
AIAA
Paper No. AIAA-96-0598.
80.
Antar
,
B. N.
, and
Collins
,
F. G.
,
1997
, “
Flow Boiling During Quench in Low Gravity Environment
,”
Microgravity Sci. Technol.
,
10
, pp.
118
128
.
81.
Antar
,
B. N.
,
Collins
,
F. G.
, and
Hedayatpour
,
A.
,
1990
, “
Transfer Line Chilldown in Low Gravity
,”
AIAA
Paper No. 90-2372.
82.
Velat
,
C. J.
,
2004
, “
Experiments in Cryogenic Two Phase Flow
,”
Master's thesis
, University of Florida, Gainesville, FL.http://etd.fcla.edu/UF/UFE0006941/velat_c.pdf
83.
Jackson
,
J.
,
2006
, “
Cryogenic Two-Phase Flow During Chilldown: Flow Transition and Nucleate Boiling Heat Transfer
,” Ph.D. thesis, University of Florida, Gainesville, FL.
84.
Velat
,
C. J.
,
Jackson
,
J.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2004
, “
Cryogenic Two-Phase Flow During Chilldown
,”
ASME
Paper No. HT-FED2004-56555.
85.
Jackson
,
J.
,
Liao
,
J.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2005
, “
Transient Heat Transfer During Cryogenic Chilldown
,”
ASME
Paper No. HT2005-72145.
86.
Chung
,
J. N.
,
2004
, “
Cryogenic Two-Phase Flow and Boiling Heat Transfer During Pipe Chilldown
,”
AIAA
Paper No. 2004-2175.
87.
Yuan
,
K.
,
2006
, “
Cryogenic Boiling and Two-Phase Chilldown Process Under Terrestrial and Microgravity Conditions
,”
Master's thesis
, University of Florida, Gainesville, FL.http://chunglab.mae.ufl.edu/media/558/cryogenic_boiling_and_two-phase_chilldown_process_under_terrestrial_and_microgravity_conditions.pdf
88.
Yuan
,
K.
,
Ji
,
Y.
, and
Chung
,
J. N.
,
2007
, “
Cryogenic Chilldown Process Under Low Flow Rates
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4011
4022
.
89.
Yuan
,
K.
,
Ji
,
Y.
,
Chung
,
J. N.
, and
Shyy
,
W.
,
2008
, “
Cryogenic Boiling and Two-Phase Flow During Pipe Chilldown in Earth and Reduced Gravity
,”
J. Low Temp. Phys.
,
150
(
1–2
), pp.
101
122
.
90.
Hu
,
H.
,
Chung
,
J. N.
, and
Amber
,
S. H.
,
2012
, “
An Experimental Study on Flow Patterns and Heat Transfer Characteristics During Cryogenic Chilldown in a Vertical Pipe
,”
Cryogenics
,
52
(
4–6
), pp.
268
277
.
91.
Shaeffer
,
R.
,
Hu
,
H.
, and
Chung
,
J. N.
,
2013
, “
An Experimental Study on Liquid Nitrogen Pipe Chilldown and Heat Transfer With Pulse Flows
,”
Int. J. Heat Mass Transfer
,
67
, pp.
955
966
.
92.
Hu
,
H.
,
Wijeratne
,
T. K.
, and
Chung
,
J. N.
,
2014
, “
Two-Phase Flow and Heat Transfer During Chilldown of a Simulated Flexible Metal Hose Using Liquid Nitrogen
,”
J. Low Temp. Phys.
,
174
(
5–6
), pp.
247
268
.
93.
Kawanami
,
O.
,
Azuma
,
H.
, and
Ohta
,
H.
,
2007
, “
Effect of Gravity on Cryogenic Boiling Heat Transfer During Tube Quenching
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3490
3497
.
94.
Kawanami
,
O.
,
Nishida
,
T.
,
Honda
,
I.
,
Kawashima
,
Y.
, and
Ohta
,
H.
,
2007
, “
Flow and Heat Transfer on Cryogenic Flow Boiling During Tube Quenching Under Upward and Downward Flow
,”
Microgravity Sci. Technol.
,
9
(
3–4
), pp.
137
138
.
95.
Johnson
,
J.
,
2014
, “
Cryogenic Two-Phase Flow During Chilldown: Parametric Studies and Numerical Modeling
,” Master's thesis, Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram, India.
96.
Johnson
,
J.
, and
Shine
,
S. R.
,
2015
, “
Transient Cryogenic Chill Down Process in Horizontal and Inclined Pipes
,”
Cryogenics
,
71
, pp.
7
17
.
97.
Darr
,
S. R.
,
Dong
,
J.
,
Glikin
,
N.
,
Hartwig
,
J. W.
,
Majumdar
,
A.
,
Leclair
,
A.
, and
Chung
,
J. N.
,
2016
, “
Effect of Gravity on Cryogenic Flow Boiling and Chilldown
,”
Nat. Microgravity
,
2
, p.
16033
.
98.
Rame
,
E.
,
Hartwig
,
J. W.
, and
McQuillen
,
J. B.
,
2014
, “
Flow Visualization of Liquid Hydrogen Line Chill Down Tests
,”
AIAA
Paper No. 2014-1074.
99.
Hartwig
,
J. W.
,
McQuillen
,
J. B.
, and
Rame
,
E.
,
2016
, “
Pulse Chilldown Tests of a Pressure Fed Liquid Hydrogen Transfer Line
,”
AIAA
Paper No. 2016-2186.
100.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2000
, “
Cryogenic Material Properties Database
,”
Cryocoolers 11
, Springer, Berlin.
101.
LeClair
,
A.
, and
Majumdar
,
A.
,
2010
, “
Computational Model of the Chilldown and Propellant Loading of the Space Shuttle External Tank
,”
AIAA
Paper No. 2010-6561.
102.
Groeneveld
,
D. C.
, and
Gardiner
,
R. M.
,
1978
, “
A Method of Obtaining Flow Film Boiling Data for Subcooled Water
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
664
665
.
103.
Groeneveld
,
D. C.
, and
Snoek
,
C. W.
,
1984
, “
A Comprehensive Examination of Heat Transfer Correlations Suitable for Reactor Safety Analysis
,”
Multiphase Science and Technology
, Springer, Berlin, pp.
181
274
.
104.
Shah
,
M. M.
, and
Siddiqui
,
M. A.
,
2000
, “
A General Correlation for Heat Transfer During Dispersed-Flow Film Boiling in Tubes
,”
Heat Transfer Eng.
,
21
(4), pp.
18
32
.https://www.tandfonline.com/doi/abs/10.1080/01457630050144479?journalCode=uhte20
105.
Mossad
,
M.
, and
Johannsen
,
K.
,
1989
, “
A New Correlation for Subcooled and Low Quality Film Boiling Heat Transfer of Water at Pressures From 0.1 to 8 MPa
,”
Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
, Karlsruhe, Germany, Oct. 10–13, pp.
1111
1117
.
106.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
.
107.
Baumeister
,
K. J.
, and
Simon
,
F. F.
,
1973
, “
Leidenfrost Temperature—Its Correlation for Liquid Metals, Cryogens, Hydrocarbons, and Water
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
166
173
.
108.
Spiegler
,
P.
,
Hopenfeld
,
J.
,
Silberberg
,
M.
,
Bumpus
,
C. F.
, and
Norman
,
A.
,
1963
, “
Onset of Stable Film Boiling and the Foam Limit
,”
Int. J. Heat Mass Transfer
,
6
(
11
), pp.
987
994
.
109.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” U.S. Atomic Energy Commission, Washington, DC, AEC Report No.
AECU-4439
.https://www.osti.gov/servlets/purl/4175511
110.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool Boiling Heat Fluxes From Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.
111.
Katto
,
Y.
, and
Kurata
,
C.
,
1980
, “
Critical Heat Flux of Saturated Convective Boiling on Uniformly Heated Plates in a Parallel Flow
,”
Int. J. Multiphase Flow
,
6
(
6
), pp.
575
582
.
112.
Katto
,
Y.
, and
Ohno
,
H.
,
1984
, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.
113.
Mudawar
,
I.
, and
Maddox
,
D. E.
,
1990
, “
Enhancement of Critical Heat Flux From High Power Microelectric Heat Sources in a Flow Channel
,”
ASME J. Electron. Packag.
,
112
(
3
), pp.
241
248
.
114.
Brentari
,
E. G.
,
Giarratano
,
P. J.
, and
Smith
,
R. V.
,
1965
, “
Boiling Heat Transfer for Oxygen, Nitrogen, Hydrogen, and Helium
,” NBS Technical Note No. 317.
115.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.https://dspace.mit.edu/handle/1721.1/61431
116.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
117.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2110
2118
.
118.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2013
, “
Heat Transfer Correlation for Flow Boiling in Small to Micro Tubes
,”
Int. J. Heat Mass Transfer
,
66
, pp.
563
574
.https://www.sciencedirect.com/science/article/pii/S0017931013005966
119.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.
120.
Ogata
,
H.
, and
Sato
,
S.
,
1974
, “
Forced Convection Heat Transfer to Boiling Helium in a Tube
,”
Cryogenics
,
14
(
7
), pp.
375
380
.
121.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.
122.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1778
1787
.
123.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling: A Simple Correlation I
,”
First U.K. National Conference on Heat Transfer
(The Institution of Chemical Engineers Symposium Series, Vol. 2.86), Pergamon Press, Oxford, UK, pp.
785
793
.
124.
Shah
,
M. M.
,
1987
, “
Improved General Correlation for Critical Heat Flux During Upflow in Uniformly Heated Vertical Tubes
,”
Heat Fluid Flow
,
8
, pp.
326
335
.
You do not currently have access to this content.