Two biomimetic synthetic jet (SJ) actuators were designed, manufactured, and tested under conditions of a jet impingement onto a wall. Nozzles of the actuators were formed by a flexible diaphragm rim, the working fluid was air, and the operating frequencies were chosen near the resonance at 65 Hz and 69 Hz. Four experimental methods were used: phase-locked visualization of the oscillating nozzle lips, jet momentum flux measurement using a precision scale, hot-wire anemometry, and mass transfer measurement using the naphthalene sublimation technique. The results demonstrated possibilities of the proposed actuators to cause a desired heat/mass transfer distribution on the exposed wall. It was concluded that the heat/mass transfer rate was commensurable with a conventional continuous impinging jets (IJs) at the same Reynolds numbers.

References

References
1.
Dyban
,
E. P.
, and
Mazur
,
A. I.
,
1982
,
Convection Heat Transfer in Impinging Jets (Konvektivnyj Teploobmen Pri Strujnom Obtekanii Tel)
,
1st ed.
,
Naukova Dumka
,
Kiev, Ukraine
(in Russian).
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
3.
Webb
,
B. W.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.
4.
Garimella
,
S. V.
,
2000
, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
,
11
, pp.
413
494
.
5.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.
6.
Mallinson
,
S. G.
,
Reizes
,
J. A.
, and
Hong
,
G.
,
2001
, “
An Experimental and Numerical Study of Synthetic Jet Flow
,”
Aeronaut. J.
,
105
(
1043
), pp.
41
49
.
7.
Mohseni
,
K.
, and
Mittal
,
R.
,
2015
,
Synthetic Jets, Fundamentals and Applications
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
8.
Cater
,
J. E.
, and
Soria
,
J.
,
2002
, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
,
472
, pp.
167
200
.
9.
Pack
,
L. G.
, and
Seifert
,
A.
,
2001
, “
Periodic Excitation for Jet Vectoring and Enhanced Spreading
,”
J. Aircr.
,
38
(
3
), pp.
486
495
.
10.
Dauphinee
,
T. M.
,
1957
, “
Acoustic Air Pump
,”
Rev. Sci. Instrum.
,
28
(
6
), p.
452
.
11.
Gallas
,
Q.
,
Holman
,
R.
,
Nishida
,
T.
,
Carroll
,
B.
,
Sheplak
,
M.
, and
Cattafesta
,
L.
,
2003
, “
Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators
,”
AIAA J.
,
41
(
2
), pp.
240
247
.
12.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.
13.
Zhou
,
J.
,
Tang
,
H.
, and
Zhong
,
S.
,
2009
, “
Vortex Roll-Up Criterion for Synthetic Jets
,”
AIAA J.
,
47
(
5
), pp.
1252
1262
.
14.
Trávníček
,
Z.
,
Broučková
,
Z.
, and
Kordík
,
J.
,
2012
, “
Formation Criterion for Axisymmetric Synthetic Jets at High Stokes Numbers
,”
AIAA J.
,
50
(
9
), pp.
2012
2017
.
15.
De Luca
,
L.
,
Girfoglio
,
M.
, and
Coppola
,
G.
,
2014
, “
Modeling and Experimental Validation of the Frequency Response of Synthetic Jet Actuators
,”
AIAA J.
,
52
(
8
), pp.
1733
1748
.
16.
Greco
,
C. S.
,
Cardone
,
G.
, and
Soria
,
J.
,
2017
, “
On the Behaviour of Impinging Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
,
810
, pp.
25
59
.
17.
Gilarranz
,
J. L.
,
Traub
,
L. W.
, and
Rediniotis
,
O. K.
,
2005
, “
A New Class of Synthetic Jet Actuators—Part I: Design, Fabrication and Bench Top Characterization
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
367
376
.
18.
Wang
,
J.-J.
,
Shan
,
R.-Q.
,
Zhang
,
C.
, and
Feng
,
L.-H.
,
2010
, “
Experimental Investigation of a Novel Two-Dimensional Synthetic Jet
,”
Eur. J. Mech. B
,
29
(
5
), pp.
342
350
.
19.
Trávníček
,
Z.
,
Vít
,
T.
, and
Tesař
,
V.
,
2006
, “
Hybrid Synthetic Jet as the Non-Zero-Net-Mass-Flux Jet
,”
Phys. Fluids
,
18
(
8
), p.
081701
.
20.
Kordík
,
J.
, and
Trávníček
,
Z.
,
2017
, “
Optimal Diameter of Nozzles of Synthetic Jet Actuators Based on Electrodynamic Transducers
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
281
294
.
21.
Smith
,
B. L.
, and
Glezer
,
A.
,
2002
, “
Jet Vectoring Using Synthetic Jets
,”
J. Fluid Mech.
,
458
, pp.
1
34
.
22.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Controlled Transients of Flow Reattachment Over Stalled Airfoils
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
690
699
.
23.
Mittal
,
R.
, and
Rampunggoon
,
P.
,
2002
, “
On the Virtual Aeroshaping Effect of Synthetic Jets
,”
Phys. Fluids
,
14
(
4
), pp.
1533
1536
.
24.
Chen
,
F.-J.
, and
Beeler
,
G. B.
,
2002
, “
Virtual Shaping of a Two-Dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator
,”
AIAA
Paper No. 2002-3273.
25.
Ben Chiekh
,
M.
,
Bera
,
J. C.
, and
Sunyach
,
M.
,
2003
, “
Synthetic Jet Control for Flows in a Diffuser: Vectoring, Spreading and Mixing Enhancement
,”
J. Turbul.
,
4
(
32
), pp. 1–12.https://www.tandfonline.com/doi/abs/10.1088/1468-5248/4/1/032
26.
Xia
,
Q.
, and
Zhong
,
S.
,
2017
, “
Enhancement of in Line Mixing With Lateral Synthetic Jet Pairs at Low Reynolds Numbers: The Effect of Fluid Viscosity
,”
Flow Meas. Instrum.
,
53
, pp.
308
316
.
27.
Yassour
,
Y.
,
Stricker
,
J.
, and
Wolfshtein
,
M.
,
1986
, “
Heat Transfer From a Small Pulsating Jet
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
1183
1186
.
28.
Trávníček
,
Z.
, and
Tesař
,
V.
,
2003
, “
Annular Synthetic Jet Used for Impinging Flow Mass–Transfer
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3291
3297
.
29.
Kercher
,
D. S.
,
Lee
,
J.-B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
359
366
.
30.
Gillespie
,
M. B.
,
Black
,
W. Z.
,
Rinehart
,
C.
, and
Glezer
,
A.
,
2006
, “
Local Convective Heat Transfer From a Constant Heat Flux Flat Plate Cooled by Synthetic Air Jets
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
990
1000
.
31.
Arik
,
M.
,
2008
, “
Local Heat Transfer Coefficients of a High-Frequency Synthetic Jet During Impingement Cooling Over Flat Surfaces
,”
Heat Transfer Eng.
,
29
(
9
), pp.
763
773
.
32.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2010
, “
Heat Transfer Characteristics of Synthetic Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1057
1069
.
33.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3900
3908
.
34.
Lee
,
A.
,
Yeoh
,
G. H.
,
Timchenko
,
V.
, and
Reizes
,
J. A.
,
2012
, “
Flow Structure Generated by Two Synthetic Jets in a Channel: Effect of Phase and Frequency
,”
Sens. Actuators, A
,
184
, pp.
98
111
.
35.
Trávníček
,
Z.
, and
Vít
,
T.
,
2015
, “
Impingement Heat/Mass Transfer to Hybrid Synthetic Jets and Other Reversible Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
85
, pp.
473
487
.
36.
Broučková
,
Z.
,
Trávníček
,
Z.
, and
Vít
,
T.
,
2018
, “
Synthetic and Continuous Jets Impinging on a Circular Cylinder
,”
Heat Transfer Eng.
,
40
(
13–14
), epub.
37.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
036004
.
38.
Marut
,
K.
,
Stewart
,
C.
,
Michael
,
T.
,
Villanueva
,
A.
, and
Priya
,
S.
,
2013
, “
A Jellyfish-Inspired Jet Propulsion Robot Actuated by an Iris Mechanism
,”
Smart Mater. Struct.
,
22
(
9
), p.
094021
.
39.
Najem
,
J.
,
Sarles
,
S. A.
,
Akle
,
B.
, and
Leo
,
D. J.
,
2012
, “
Biomimetic Jellyfish Inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators
,”
Smart Mater. Struct.
,
21
(
9
), p.
094026
.
40.
Nawroth
,
J. C.
,
Lee
,
H.
,
Feinberg
,
A. W.
,
Ripplinger
,
C. M.
,
McCain
,
M. L.
,
Grosberg
,
A.
,
Dabiri
,
J. O.
, and
Parker
,
K. K.
,
2012
, “
A Tissue-Engineered Jellyfish With Biomimetic Propulsion
,”
Nat. Biotechnol.
,
30
(
8
), pp.
792
797
.
41.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2005
, “
Starting Flow Through Nozzles With Temporally Variable Exit Diameter
,”
J. Fluid Mech.
,
538
(
1
), pp.
111
136
.
42.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
, and
Saddoughi
,
S.
,
2004
, “
Micro Fluidic Jets for Thermal Management of Electronics
,”
ASME
Paper No. HT-FED2004-56782.
43.
Yang
,
A.-S.
,
Ro
,
J.-J.
, and
Chang
,
W.-H.
,
2009
, “
Experimental and Numerical Studies of Synthetic Jets Driven by a Dual-Diaphragm Piezoelectric Actuator
,”
Proc. Inst. Mech. Eng., Part C
,
223
, pp.
1393
1400
.
44.
De Bock
,
H. P. J.
,
Jackson
,
J. L.
,
Whalen
,
B. P.
, and
Chamarthy
,
P.
,
2012
, “
Experimental Flow Performance Evaluation of Novel Miniaturized Advanced Piezoelectric Dual Cooling Jet
,”
J. Phys.: Conf. Ser.
,
395
, p.
012035
.
45.
de Bock
,
H. P.
,
Persoon
,
T.
, and
Bodla
,
K.
,
2016
, “
Particle Image Velocimetry Study on Dual Cooling Jet Flows
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
1366
1372
.
46.
Albright
,
S. O.
, and
Solovitz
,
S. A.
,
2016
, “
Examination of a Variable-Diameter Synthetic Jet
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121103
.
47.
Trávníček
,
Z.
, and
Broučková
,
Z.
,
2018
, “
A Synthetic Jet Issuing From a Bio-Inspired Actuator With an Oscillating Nozzle Lip
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101104
.
48.
Broučková
,
Z.
, and
Trávníček
,
Z.
,
2015
, “
Visualization Study of Hybrid Synthetic Jets
,”
J. Vis.
,
18
(
4
), pp.
581
593
.
49.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
.
50.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
51.
Vukasinovic
,
J.
, and
Glezer
,
A.
,
2001
, “
An Active Radial Countercurrent Heat Sink Driven by a Synthetic Jet Actuator
,”
ASME
Paper No. IMECE2001/EPP-24701.
52.
Kordík
,
J.
, and
Trávníček
,
Z.
,
2018
, “
Integral Quantities of Axisymmetric Synthetic Jets Evaluated From a Direct Jet Thrust Measurement
,”
Flow Turbul. Combust.
(in review).
53.
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2015
, “
Influence of Cavity Shape on Synthetic Jet Performance
,”
Sens. Actuators, A
,
223
, pp.
1
10
.
54.
Trávníček
,
Z.
,
Broučková
,
Z.
,
Kordík
,
J.
, and
Vít
,
T.
,
2015
, “
Visualization of Synthetic Jet Formation in Air
,”
J. Vis.
,
18
(
4
), pp.
595
609
.
55.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
56.
Trávníček
,
Z.
,
Tesař
,
V.
,
Broučková
,
Z.
, and
Peszyński
,
K.
,
2014
, “
Annular Impinging Jet Controlled by Radial Synthetic Jets
,”
Heat Transf. Eng.
,
35
(
16–17
), pp.
1450
1461
.
57.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.
58.
Choo
,
K. S.
,
Youn
,
Y. J.
,
Kim
,
S. J.
, and
Lee
,
D. H.
,
2009
, “
Heat Transfer Characteristics of a Micro-Scale Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3169
3175
.
59.
Shadlesky
,
P. S.
,
1983
, “
Stagnation Point Heat Transfer for Jet Impingement to a Plane Surface
,”
AIAA J.
,
21
(
8
), pp.
1214
1215
.
60.
Zaman
,
K. B. M. Q.
,
1996
, “
Axis Switching and Spreading of an Asymmetric Jet: The Role of Coherent Structure Dynamics
,”
J. Fluid Mech.
,
316
(
1
), pp.
1
27
.
61.
Vouros
,
A. P.
,
Panidis
,
T.
,
Pollard
,
A.
, and
Schwab
,
R.
,
2015
, “
Near Field Vorticity Distributions From a Sharp-Edged Rectangular Jet
,”
Int. J. Heat Fluid Flow
,
51
, pp.
383
394
.
62.
Wang
,
L.
,
Feng
,
L.-H.
,
Wang
,
J.-J.
, and
Li
,
T.
,
2018
, “
Evolution of Low-Aspect-Ratio Rectangular Synthetic Jets in a Quiescent Environment
,”
Exp. Fluids
,
59
(
91
), pp.
1
16
.
You do not currently have access to this content.